論文の概要: Stay Connected, Leave no Trace: Enhancing Security and Privacy in WiFi
via Obfuscating Radiometric Fingerprints
- arxiv url: http://arxiv.org/abs/2011.12644v2
- Date: Fri, 27 Nov 2020 12:25:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-23 00:56:15.169242
- Title: Stay Connected, Leave no Trace: Enhancing Security and Privacy in WiFi
via Obfuscating Radiometric Fingerprints
- Title(参考訳): wi-fiのセキュリティとプライバシーの強化は、電波指紋の難読化による
- Authors: Luis F. Abanto-Leon and Andreas Baeuml and Gek Hong (Allyson) Sim and
Matthias Hollick and Arash Asadi
- Abstract要約: WiFiチップセットの固有のハードウェア欠陥は、送信された信号に現れ、ユニークなラジオメトリック指紋をもたらす。
近年の研究では、市販品で容易に実装可能な実用的な指紋認証ソリューションが提案されている。
解析的および実験的に、これらのソリューションは偽造攻撃に対して非常に脆弱であることを示す。
本稿では, RF-Veilを提案する。RF-Veilは, 偽造攻撃に対して堅牢なだけでなく, ユーザのプライバシーも保護する。
- 参考スコア(独自算出の注目度): 8.89054576694426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The intrinsic hardware imperfection of WiFi chipsets manifests itself in the
transmitted signal, leading to a unique radiometric fingerprint. This
fingerprint can be used as an additional means of authentication to enhance
security. In fact, recent works propose practical fingerprinting solutions that
can be readily implemented in commercial-off-the-shelf devices. In this paper,
we prove analytically and experimentally that these solutions are highly
vulnerable to impersonation attacks. We also demonstrate that such a unique
device-based signature can be abused to violate privacy by tracking the user
device, and, as of today, users do not have any means to prevent such privacy
attacks other than turning off the device.
We propose RF-Veil, a radiometric fingerprinting solution that not only is
robust against impersonation attacks but also protects user privacy by
obfuscating the radiometric fingerprint of the transmitter for non-legitimate
receivers. Specifically, we introduce a randomized pattern of phase errors to
the transmitted signal such that only the intended receiver can extract the
original fingerprint of the transmitter. In a series of experiments and
analyses, we expose the vulnerability of adopting naive randomization to
statistical attacks and introduce countermeasures. Finally, we show the
efficacy of RF-Veil experimentally in protecting user privacy and enhancing
security. More importantly, our proposed solution allows communicating with
other devices, which do not employ RF-Veil.
- Abstract(参考訳): WiFiチップセットの固有のハードウェア欠陥は、送信された信号に現れ、ユニークなラジオメトリック指紋をもたらす。
この指紋は、セキュリティを強化するための認証手段として使用できる。
実際、近年の研究では、市販のデバイスに容易に実装できる実用的な指紋認証ソリューションが提案されている。
本稿では,これらの解が偽装攻撃に対して非常に脆弱であることを解析的かつ実験的に証明する。
また、このようなユニークなデバイスベースの署名は、ユーザーデバイスを追跡することによってプライバシーを侵害するために悪用されることも示しており、現在、ユーザーはデバイスをオフにする以外にそのようなプライバシー攻撃を防ぐ手段を持っていない。
RF-Veilは,不正行為に対して堅牢であるだけでなく,送信機の無線指紋を非正規受信機に隠蔽することでユーザのプライバシーを保護する。
具体的には、送信信号に位相誤差のランダム化パターンを導入し、受信側だけが送信元の指紋を抽出できるようにした。
一連の実験と分析において, 統計的攻撃に内在的ランダム化を採用する脆弱性を明らかにし, 対策を導入する。
最後に,RF-Veilがユーザプライバシ保護とセキュリティ向上に有効であることを示す。
さらに,提案手法はRF-Veilを使用しない他のデバイスとの通信を可能にする。
関連論文リスト
- HidePrint: Hiding the Radio Fingerprint via Random Noise [3.9901365062418312]
HidePrintは、送信された信号に制御されたノイズを注入することで、送信者の指紋を不正な盗聴者に対して隠す。
我々は,送信者が無線指紋を意図した受信者のサブセットのみに開示できる新しい技術である,選択的無線指紋開示を導入する。
論文 参考訳(メタデータ) (2024-11-10T10:45:35Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
複数の無線エッジデバイス間の協調推論は、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
抽出された特徴を抽出することは、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシーリスクをもたらす。
本稿では,ネットワーク内の各エッジデバイスが抽出された機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
論文 参考訳(メタデータ) (2024-10-25T18:11:02Z) - Preventing Radio Fingerprinting through Friendly Jamming [5.074726108522963]
無線周波数指紋認証により、受動受信機は暗号ツールを必要とせずに送信機を認識し認証することができる。
悪意ある人物によるフィールド内の無線機器の不正な追跡を容易にする無線周波数指紋認証の敵対的利用について検討する。
通信路上の機器の匿名性を改善するために,ジャマーを用いて指紋の送信信号を消毒する方法を提案する。
論文 参考訳(メタデータ) (2024-07-11T09:01:46Z) - Erasing Radio Frequency Fingerprints via Active Adversarial Perturbation [19.88283575742985]
本稿では、パイロット信号データから機械学習モデルを訓練して識別する、一般的なRFフィンガープリントシナリオについて考察する。
新たな対向攻撃ソリューションは適切な摂動を生成するように設計されており、パイロット信号はハードウェアの特徴を隠蔽し、モデルを誤分類することができる。
大規模な実験結果から,RF指紋を効果的に消去し,ユーザのプライバシーを保護できることが示されている。
論文 参考訳(メタデータ) (2024-06-11T15:16:05Z) - Sticky Fingers: Resilience of Satellite Fingerprinting against Jamming Attacks [13.857226688708353]
干渉・妨害攻撃における無線指紋認証の有効性を評価する。
我々は、メッセージの内容そのものを妨害するのと同じように、指紋を妨害するために、同様の量のジャミングパワーが必要であると結論づける。
論文 参考訳(メタデータ) (2024-02-07T17:28:09Z) - Tamper-Evident Pairing [55.2480439325792]
Tamper-Evident Pairing (TEP)はPush-ButtonConfiguration (PBC)標準の改良である。
TEP は Tamper-Evident Announcement (TEA) に依存しており、相手が送信されたメッセージを検出せずに改ざんしたり、メッセージが送信された事実を隠蔽したりすることを保証している。
本稿では,その動作を理解するために必要なすべての情報を含む,TEPプロトコルの概要について概説する。
論文 参考訳(メタデータ) (2023-11-24T18:54:00Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
ソーシャルメディアからの指紋漏洩は 画像を匿名化したいという強い欲求を喚起します
指紋漏洩を保護するために、画像に知覚不能な摂動を加えることにより、敵攻撃が解決策として現れる。
この問題を解決するために,階層型パーセプティカルノイズ注入フレームワークであるFingerSafeを提案する。
論文 参考訳(メタデータ) (2022-08-23T02:20:46Z) - Locally Authenticated Privacy-preserving Voice Input [10.82818142802482]
サービスプロバイダはユーザを認証しなければならないが、個人はプライバシの維持を望むかもしれない。
認証の実行中にプライバシを保存することは、特に敵がバイオメトリックデータを使用してトランスフォーメーションツールをトレーニングする場合には、非常に難しい。
ユーザの生信号のデバイス上の指紋をキャプチャして保存する,セキュアでフレキシブルなプライバシ保護システムを導入する。
論文 参考訳(メタデータ) (2022-05-27T14:56:01Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
GoogleとAppleは共同で,Bluetooth Low Energyを使用した分散型コントラクトトレースアプリを実装するための公開通知APIを提供している。
実世界のシナリオでは、GAP設計は(i)プロファイリングに脆弱で、(ii)偽の連絡先を生成できるリレーベースのワームホール攻撃に弱いことを実証する。
論文 参考訳(メタデータ) (2020-06-10T16:05:05Z) - Decentralized Privacy-Preserving Proximity Tracing [50.27258414960402]
DP3TはSARS-CoV-2の普及を遅らせるための技術基盤を提供する。
システムは、個人やコミュニティのプライバシーとセキュリティのリスクを最小限にすることを目的としている。
論文 参考訳(メタデータ) (2020-05-25T12:32:02Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。