Feature space approximation for kernel-based supervised learning
- URL: http://arxiv.org/abs/2011.12651v2
- Date: Mon, 15 Mar 2021 17:06:34 GMT
- Title: Feature space approximation for kernel-based supervised learning
- Authors: Patrick Gel{\ss}, Stefan Klus, Ingmar Schuster, Christof Sch\"utte
- Abstract summary: The goal is to reduce the size of the training data, resulting in lower storage consumption and computational complexity.
We demonstrate significant improvements in comparison to the computation of data-driven predictions involving the full training data set.
The method is applied to classification and regression problems from different application areas such as image recognition, system identification, and oceanographic time series analysis.
- Score: 2.653409741248232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for the approximation of high- or even
infinite-dimensional feature vectors, which play an important role in
supervised learning. The goal is to reduce the size of the training data,
resulting in lower storage consumption and computational complexity.
Furthermore, the method can be regarded as a regularization technique, which
improves the generalizability of learned target functions. We demonstrate
significant improvements in comparison to the computation of data-driven
predictions involving the full training data set. The method is applied to
classification and regression problems from different application areas such as
image recognition, system identification, and oceanographic time series
analysis.
Related papers
- Improved Graph-based semi-supervised learning Schemes [0.0]
In this work, we improve the accuracy of several known algorithms to address the classification of large datasets when few labels are available.
Our framework lies in the realm of graph-based semi-supervised learning.
arXiv Detail & Related papers (2024-06-30T16:50:08Z) - Deep Metric Learning for Computer Vision: A Brief Overview [4.980117530293724]
Objective functions that optimize deep neural networks play a vital role in creating an enhanced feature representation of the input data.
Deep Metric Learning seeks to develop methods that aim to measure the similarity between data samples.
We will provide an overview of recent progress in this area and discuss state-of-the-art Deep Metric Learning approaches.
arXiv Detail & Related papers (2023-12-01T21:53:36Z) - Randomized Dimension Reduction with Statistical Guarantees [0.27195102129095]
This thesis explores some of such algorithms for fast execution and efficient data utilization.
We focus on learning algorithms with various incorporations of data augmentation that improve generalization and distributional provably.
Specifically, Chapter 4 presents a sample complexity analysis for data augmentation consistency regularization.
arXiv Detail & Related papers (2023-10-03T02:01:39Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
We present a method to infer a dense depth map from a color image and associated sparse depth measurements.
We show that regularization and co-visibility are related via the fitness of the model to data and can be unified into a single framework.
arXiv Detail & Related papers (2021-06-06T02:27:55Z) - A Probabilistically Motivated Learning Rate Adaptation for Stochastic
Optimization [20.77923050735746]
We provide a probabilistic motivation, in terms of Gaussian inference, for popular first-order methods.
The inference allows us to relate the learning rate to a dimensionless quantity that can be automatically adapted during training.
The resulting meta-algorithm is shown to adapt learning rates in a robust manner across a large range of initial values.
arXiv Detail & Related papers (2021-02-22T10:26:31Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
We propose a self-supervised representation learning method for sequence data, based on the intuition that useful representations of sequence data should exhibit a simple structure in the latent space.
We encourage this latent structure by maximizing an estimate of predictive information of latent feature sequences, which is the mutual information between past and future windows at each time step.
We demonstrate that our method recovers the latent space of noisy dynamical systems, extracts predictive features for forecasting tasks, and improves automatic speech recognition when used to pretrain the encoder on large amounts of unlabeled data.
arXiv Detail & Related papers (2020-10-07T03:34:01Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
We formulate meta learning using information theoretic concepts; namely, mutual information and the information bottleneck.
By making use of variational approximations to the mutual information, we derive a general and tractable framework for meta learning.
arXiv Detail & Related papers (2020-09-07T16:47:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.