Deep Metric Learning for Computer Vision: A Brief Overview
- URL: http://arxiv.org/abs/2312.10046v1
- Date: Fri, 1 Dec 2023 21:53:36 GMT
- Title: Deep Metric Learning for Computer Vision: A Brief Overview
- Authors: Deen Dayal Mohan, Bhavin Jawade, Srirangaraj Setlur, Venu Govindaraj
- Abstract summary: Objective functions that optimize deep neural networks play a vital role in creating an enhanced feature representation of the input data.
Deep Metric Learning seeks to develop methods that aim to measure the similarity between data samples.
We will provide an overview of recent progress in this area and discuss state-of-the-art Deep Metric Learning approaches.
- Score: 4.980117530293724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective functions that optimize deep neural networks play a vital role in
creating an enhanced feature representation of the input data. Although
cross-entropy-based loss formulations have been extensively used in a variety
of supervised deep-learning applications, these methods tend to be less
adequate when there is large intra-class variance and low inter-class variance
in input data distribution. Deep Metric Learning seeks to develop methods that
aim to measure the similarity between data samples by learning a representation
function that maps these data samples into a representative embedding space. It
leverages carefully designed sampling strategies and loss functions that aid in
optimizing the generation of a discriminative embedding space even for
distributions having low inter-class and high intra-class variances. In this
chapter, we will provide an overview of recent progress in this area and
discuss state-of-the-art Deep Metric Learning approaches.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - DAAL: Density-Aware Adaptive Line Margin Loss for Multi-Modal Deep Metric Learning [1.9472493183927981]
We propose a novel loss function called Density-Aware Adaptive Margin Loss (DAAL)
DAAL preserves the density distribution of embeddings while encouraging the formation of adaptive sub-clusters within each class.
Experiments on benchmark fine-grained datasets demonstrate the superior performance of DAAL.
arXiv Detail & Related papers (2024-10-07T19:04:24Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) is a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments.
Our method takes inspiration from the theory developed for generative flow networks (GFlowNets)
arXiv Detail & Related papers (2023-10-04T09:39:05Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - Stochastic Mutual Information Gradient Estimation for Dimensionality
Reduction Networks [11.634729459989996]
We introduce emerging information theoretic feature transformation protocols as an end-to-end neural network training approach.
We present a dimensionality reduction network (MMINet) training procedure based on the estimate of the mutual information gradient.
We experimentally evaluate our method with applications to high-dimensional biological data sets, and relate it to conventional feature selection algorithms.
arXiv Detail & Related papers (2021-05-01T08:20:04Z) - Feature space approximation for kernel-based supervised learning [2.653409741248232]
The goal is to reduce the size of the training data, resulting in lower storage consumption and computational complexity.
We demonstrate significant improvements in comparison to the computation of data-driven predictions involving the full training data set.
The method is applied to classification and regression problems from different application areas such as image recognition, system identification, and oceanographic time series analysis.
arXiv Detail & Related papers (2020-11-25T11:23:58Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.