A Simulated Annealing Algorithm for Joint Stratification and Sample
Allocation Designs
- URL: http://arxiv.org/abs/2011.13006v3
- Date: Mon, 22 Nov 2021 17:03:37 GMT
- Title: A Simulated Annealing Algorithm for Joint Stratification and Sample
Allocation Designs
- Authors: Mervyn O'Luing, Steven Prestwich, S. Armagan Tarim
- Abstract summary: This study combines simulated annealing with delta evaluation to solve the joint stratification and sample allocation problem.
In this problem, atomic strata are partitioned into mutually exclusive and collectively exhaustive strata.
The Bell number of possible solutions is enormous, for even a moderate number of atomic strata, and an additional layer of complexity is added with the evaluation time of each solution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study combines simulated annealing with delta evaluation to solve the
joint stratification and sample allocation problem. In this problem, atomic
strata are partitioned into mutually exclusive and collectively exhaustive
strata. Each partition of atomic strata is a possible solution to the
stratification problem, the quality of which is measured by its cost. The Bell
number of possible solutions is enormous, for even a moderate number of atomic
strata, and an additional layer of complexity is added with the evaluation time
of each solution. Many larger scale combinatorial optimisation problems cannot
be solved to optimality, because the search for an optimum solution requires a
prohibitive amount of computation time. A number of local search heuristic
algorithms have been designed for this problem but these can become trapped in
local minima preventing any further improvements. We add, to the existing suite
of local search algorithms, a simulated annealing algorithm that allows for an
escape from local minima and uses delta evaluation to exploit the similarity
between consecutive solutions, and thereby reduces the evaluation time. We
compared the simulated annealing algorithm with two recent algorithms. In both
cases, the simulated annealing algorithm attained a solution of comparable
quality in considerably less computation time.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Quantum-Based Feature Selection for Multi-classification Problem in
Complex Systems with Edge Computing [15.894122816099133]
A quantum-based feature selection algorithm for the multi-classification problem, namely, QReliefF, is proposed.
Our algorithm is superior in finding the nearest neighbor, reducing the complexity from O(M) to O(sqrt(M)).
arXiv Detail & Related papers (2023-10-01T03:57:13Z) - A Sequential Deep Learning Algorithm for Sampled Mixed-integer
Optimisation Problems [0.3867363075280544]
We introduce and analyse two efficient algorithms for mixed-integer optimisation problems.
We show that both algorithms exhibit finite-time convergence towards the optimal solution.
We establish quantitatively the efficacy of these algorithms by means of three numerical tests.
arXiv Detail & Related papers (2023-01-25T17:10:52Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
We propose an Ising formulation of integer optimization problems to utilize quantum annealing in the iterative improvement strategy.
We analytically show that a first-order phase transition is successfully avoided for a fully connected ferro Potts model if the overlap between a ground state and a candidate solution exceeds a threshold.
arXiv Detail & Related papers (2022-11-08T02:12:49Z) - Combining K-means type algorithms with Hill Climbing for Joint
Stratification and Sample Allocation Designs [0.0]
This is a sample problem in which we search for the optimal stratification from the set of all possible stratifications of basic strata.
evaluating the cost of each solution is expensive.
We compare the above multi-stage combination of algorithms with three recent algorithms and report the solution costs, evaluation times and training times.
arXiv Detail & Related papers (2021-08-18T08:41:58Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
We propose a new low-cardinality algorithm that generalizes the local update to maximize a semidefinite relaxation derived from Leiden-k-cut.
This proposed algorithm is scalable, outperforms state-of-the-art algorithms, and outperforms in real-world time with little additional cost.
arXiv Detail & Related papers (2020-12-04T15:46:30Z) - Beyond Worst-Case Analysis in Stochastic Approximation: Moment
Estimation Improves Instance Complexity [58.70807593332932]
We study oracle complexity of gradient based methods for approximation problems.
We focus on instance-dependent complexity instead of worst case complexity.
Our proposed algorithm and its analysis provide a theoretical justification for the success of moment estimation.
arXiv Detail & Related papers (2020-06-08T09:25:47Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z) - Stochastic Optimization for Regularized Wasserstein Estimators [10.194798773447879]
We introduce an algorithm to solve a regularized version of the problem of Wasserstein estimators gradient, with a time per step which is sublinear in the natural dimensions.
We show that this algorithm can be extended to other tasks, including estimation of Wasserstein barycenters.
arXiv Detail & Related papers (2020-02-20T12:04:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.