A cavity-QED quantum simulator of dynamical phases of a BCS
superconductor
- URL: http://arxiv.org/abs/2011.13007v2
- Date: Tue, 23 Mar 2021 22:23:41 GMT
- Title: A cavity-QED quantum simulator of dynamical phases of a BCS
superconductor
- Authors: Robert J. Lewis-Swan, Diego Barberena, Julia R. K. Cline, Dylan J.
Young, James K. Thompson and Ana Maria Rey
- Abstract summary: We simulate dynamical phases of a BCS superconductor using an ensemble of cold atoms trapped in an optical cavity.
Our proposal paves the way for the study of non-equilibrium features of quantum magnetism and superconductivity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose to simulate dynamical phases of a BCS superconductor using an
ensemble of cold atoms trapped in an optical cavity. Effective Cooper pairs are
encoded via internal states of the atoms and attractive interactions are
realized via the exchange of virtual photons between atoms coupled to a common
cavity mode. Control of the interaction strength combined with a tunable
dispersion relation of the effective Cooper pairs allows exploration of the
full dynamical phase diagram of the BCS model, as a function of system
parameters and the prepared initial state. Our proposal paves the way for the
study of non-equilibrium features of quantum magnetism and superconductivity by
harnessing atom-light interactions in cold atomic gases.
Related papers
- Methods for transverse and longitudinal spin-photon coupling in silicon
quantum dots with intrinsic spin-orbit effect [0.32301042014102566]
This paper examines the theory of both transverse and longitudinal spin-photon coupling.
We propose a method of coupling which uses the intrinsic spin-orbit interaction arising from orbital degeneracies in SiMOS qubits.
We also evaluate the feasibility of a longitudinal coupling driven by an AC modulation on the qubit.
arXiv Detail & Related papers (2023-08-24T08:04:28Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Observing dynamical phases of BCS superconductors in a cavity QED
simulator [0.0]
In conventional superconductors, electrons with opposite momenta bind into Cooper pairs due to an attractive interaction mediated by phonons in the material.
Superconductivity naturally emerges at thermal equilibrium, but can also emerge out of equilibrium when the system's parameters are abruptly changed.
Here we realize an alternate way to generate the proposed dynamical phases using cavity quantum electrodynamics.
arXiv Detail & Related papers (2023-05-31T18:00:03Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Spin- and Momentum-Correlated Atom Pairs Mediated by Photon Exchange and
Seeded by Vacuum Fluctuations [0.0]
We experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes.
We observe a collectively enhanced production of pairs and probe interspin correlations in momentum space.
Our results offer promising prospects for quantum-enhanced interferometry and quantum simulation experiments.
arXiv Detail & Related papers (2023-03-20T17:59:03Z) - Experimental Realization and Characterization of Stabilized Pair
Coherent States [4.486044407450978]
PCS is an interesting class of non-Gaussian continuous-variable entangled state.
PCS is at the heart of a promising quantum error correction code: the pair cat code.
We report an experimental demonstration of the pair coherent state of microwave photons in two superconducting cavities.
arXiv Detail & Related papers (2022-09-23T15:24:25Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Single-photon blockade in quasichiral atom-photon interaction:
Simultaneous high purity and high efficiency [1.9165601997790278]
Single-photon blockade (1PB) in the quasichiral regime of atom-photon interaction mediates via dissipative environment.
We find that in the quasichiral regime, the unconventional photon blockade (UPB) always incorporates with the conventional photon blockade (CPB) in the condition of maximum chirality.
Our work paves the way for 1PB towards practical applications and reveals the intriguing quantum-optics phenomena in the quasichiral light-matter interaction.
arXiv Detail & Related papers (2021-12-28T17:22:04Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.