Modified Relational Quantum Mechanics
- URL: http://arxiv.org/abs/2011.13039v1
- Date: Wed, 25 Nov 2020 21:53:15 GMT
- Title: Modified Relational Quantum Mechanics
- Authors: B.K. Jennings
- Abstract summary: An observer can develop an internally consistent description of the universe but it will, of necessity, differ in particulars from the description developed by any other observer.
The state vector is epistomological and relative to a given quantum system as in the original relational quantum mechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A modified version of relational quantum mechanics is developed based on the
three following ideas. An observer can develop an internally consistent
description of the universe but it will, of necessity, differ in particulars
from the description developed by any other observer. The state vector is
epistomological and relative to a given quantum system as in the original
relational quantum mechanics. If two quantum systems are entangled, they will
observe themselves to be in just one of the many states in the Schmidt
biorthonormal decomposition and not in a linear combination of many.
Related papers
- A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - The wave-particle duality of the qudit quantum space and the quantum
wave gates [0.0]
We first study the quantum functionals whose relation to the quantum states is analogous to that between the momentum and position wavefunctions in fundamental quantum physics.
Connecting the partition interpretation of the qudit functionals to the effects of quantum gates we classify all elementary quantum gates by ordered pairs of qudit functionals.
By generalizing the qudit functionals to quantum functionals, the new type of "quantum wave gates" are discovered as quantum versions of the conventional quantum gates.
arXiv Detail & Related papers (2022-07-11T22:16:33Z) - Quantum coherence with incomplete set of pointers and corresponding
wave-particle duality [0.0]
Quantum coherence quantifies the amount of superposition in a quantum system.
We develop the corresponding resource theory, identifying the free states and operations.
We obtain a complementarity relation between the so-defined quantum coherence and the which-path information in an interferometric set-up.
arXiv Detail & Related papers (2021-08-12T16:55:40Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - The Second Law of Quantum Complexity and the Entanglement Wormhole [0.0]
Quantum complexity arises as an alternative measure to the Fubini metric between two quantum states.
It is defined as the least complex unitary operator capable of transforming one state into the other.
arXiv Detail & Related papers (2021-04-11T15:23:47Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.