The wave-particle duality of the qudit quantum space and the quantum
wave gates
- URL: http://arxiv.org/abs/2207.05213v2
- Date: Tue, 20 Dec 2022 20:12:54 GMT
- Title: The wave-particle duality of the qudit quantum space and the quantum
wave gates
- Authors: Zixuan Hu and Sabre Kais
- Abstract summary: We first study the quantum functionals whose relation to the quantum states is analogous to that between the momentum and position wavefunctions in fundamental quantum physics.
Connecting the partition interpretation of the qudit functionals to the effects of quantum gates we classify all elementary quantum gates by ordered pairs of qudit functionals.
By generalizing the qudit functionals to quantum functionals, the new type of "quantum wave gates" are discovered as quantum versions of the conventional quantum gates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose three core ideas: 1. the wave-particle duality of the qudit
quantum space; 2. the classification of all elementary quantum gates by ordered
pairs of qudit functionals; 3. a new type of quantum gates called the "quantum
wave gates". We first study the quantum functionals whose relation to the
quantum states is analogous to that between the momentum and position
wavefunctions in fundamental quantum physics: a Fourier transform and an
entropic uncertainty principle can be defined between the dual representations.
The quantum functionals are not just mathematical constructs but have clear
physical meanings and quantum circuit realizations. Connecting the partition
interpretation of the qudit functionals to the effects of quantum gates we
classify all elementary quantum gates by ordered pairs of qudit functionals. By
generalizing the qudit functionals to quantum functionals, the new type of
"quantum wave gates" are discovered as quantum versions of the conventional
quantum gates.
Related papers
- A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Coupled vertical double quantum dots at single-hole occupancy [37.69303106863453]
We control vertical double quantum dots confined in a double quantum well, silicon-germanium heterostructure.
We sense individual charge transitions with a single-hole transistor.
tuning the vertical double quantum dot to the (1,1) charge state confines a single hole in each quantum well beneath a single plunger gate.
arXiv Detail & Related papers (2024-01-15T14:46:40Z) - Quantizing the Quantum Uncertainty [0.0]
We discuss the quantization of the quantum uncertainty as an operator acting on wave-functions over field space.
We show how this spectrum appears in the value of the coupling of the effective conformal potential driving the evolution of extended Gaussian wave-packets.
We conclude with an open question: is it possible to see experimental signatures of the quantization of the quantum uncertainty in non-relativistic physics?
arXiv Detail & Related papers (2023-07-03T14:40:14Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Relativity [0.0]
A new quantum postulate is suggested to restore classical locality and causality to quantum physics.
This postulate supports the EPR view that quantum mechanics is incomplete, while also staying compatible to the Bohr view that nothing exists beyond the quantum.
arXiv Detail & Related papers (2023-02-04T02:05:25Z) - Relation between Quantum Coherence and Quantum Entanglement in Quantum
Measurements [3.8073142980733]
We set up resource theories of quantum coherence and quantum entanglement for quantum measurements.
For this, we conceive a relative entropy type quantity to account for the quantum resources of quantum measurements.
Our results confirm that the understanding on the link between quantum coherence and quantum entanglement is valid even for quantum measurements which do not generate any quantum resource.
arXiv Detail & Related papers (2022-02-25T12:24:32Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.