Matchgate benchmarking: Scalable benchmarking of a continuous family of
many-qubit gates
- URL: http://arxiv.org/abs/2011.13048v2
- Date: Tue, 15 Feb 2022 08:15:33 GMT
- Title: Matchgate benchmarking: Scalable benchmarking of a continuous family of
many-qubit gates
- Authors: Jonas Helsen and Sepehr Nezami and Matthew Reagor and Michael Walter
- Abstract summary: We propose a method to reliably and efficiently extract the fidelity of many-qubit quantum circuits composed of continuously parametrized two-qubit gates called matchgates.
This method, which we call matchgate benchmarking, relies on advanced techniques from randomized benchmarking as well as insights from the representation theory of matchgate circuits.
- Score: 1.228572041576991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method to reliably and efficiently extract the fidelity of
many-qubit quantum circuits composed of continuously parametrized two-qubit
gates called matchgates. This method, which we call matchgate benchmarking,
relies on advanced techniques from randomized benchmarking as well as insights
from the representation theory of matchgate circuits. We argue the formal
correctness and scalability of the protocol, and moreover deploy it to estimate
the performance of matchgate circuits generated by two-qubit XY spin
interactions on a quantum processor.
Related papers
- Three-qubit Parity Gate via Simultaneous Cross Resonance Drives [0.0]
We show an efficient implementation of a three-qubit parity gate on two control qubits with a common target.
We also demonstrate that our simultaneous parity gates can significantly improve the parity measurement error probability for the heavy-hexagon code on an IBM Quantum processor.
arXiv Detail & Related papers (2023-09-20T13:13:00Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Applications of Universal Parity Quantum Computation [0.0]
We demonstrate the applicability of a universal gate set in the parity encoding, which is a dual to the standard gate model.
Embedding these algorithms in the parity encoding reduces the circuit depth compared to conventional gate-based implementations.
We propose simple implementations of multiqubit gates in tailored encodings and an efficient strategy to prepare graph states.
arXiv Detail & Related papers (2022-05-19T12:31:46Z) - Scalable fast benchmarking for individual quantum gates with local
twirling [1.7995166939620801]
We propose a character-cycle benchmarking protocol and a character-average benchmarking protocol only using local twirling gates.
We numerically demonstrate our protocols for a non-Clifford gate -- controlled-$(TX)$ and a Clifford gate -- five-qubit quantum error-correcting encoding circuit.
arXiv Detail & Related papers (2022-03-19T13:01:14Z) - Efficient quantum gate decomposition via adaptive circuit compression [0.0]
The utilization of parametric two-qubit gates in the circuit design allows us to transform the discrete problem of circuit synthesis into an optimization problem over continuous variables.
We implemented the algorithm in the SQUANDER software package and benchmarked it against several state-of-the-art quantum gate synthesis tools.
arXiv Detail & Related papers (2022-03-08T22:29:31Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Coherent randomized benchmarking [68.8204255655161]
We show that superpositions of different random sequences rather than independent samples are used.
We show that this leads to a uniform and simple protocol with significant advantages with respect to gates that can be benchmarked.
arXiv Detail & Related papers (2020-10-26T18:00:34Z) - Representation matching for delegated quantum computing [64.67104066707309]
representation matching is a generic probabilistic protocol for reducing the cost of quantum computation in a quantum network.
We show that the representation matching protocol is capable of reducing the communication or memory cost to almost minimum in various tasks.
arXiv Detail & Related papers (2020-09-14T18:07:43Z) - Parallel entangling gate operations and two-way quantum communication in
spin chains [0.0]
We propose a protocol to parallelize the implementation of two-qubit entangling gates.
The proposed protocol can serve for realizing two-way quantum communication.
arXiv Detail & Related papers (2020-08-28T17:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.