Physics-Informed Neural Network for Modelling the Thermochemical Curing
Process of Composite-Tool Systems During Manufacture
- URL: http://arxiv.org/abs/2011.13511v2
- Date: Mon, 14 Jun 2021 22:11:45 GMT
- Title: Physics-Informed Neural Network for Modelling the Thermochemical Curing
Process of Composite-Tool Systems During Manufacture
- Authors: Sina Amini Niaki, Ehsan Haghighat, Trevor Campbell, Anoush Poursartip,
Reza Vaziri
- Abstract summary: We present a PINN to simulate thermochemical evolution of a composite material on a tool undergoing cure in an autoclave.
We train the PINN with a technique that automatically adapts the weights on the loss terms corresponding to PDE, boundary, interface, and initial conditions.
The performance of the proposed PINN is demonstrated in multiple scenarios with different material thicknesses and thermal boundary conditions.
- Score: 11.252083314920108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a Physics-Informed Neural Network (PINN) to simulate the
thermochemical evolution of a composite material on a tool undergoing cure in
an autoclave. In particular, we solve the governing coupled system of
differential equations -- including conductive heat transfer and resin cure
kinetics -- by optimizing the parameters of a deep neural network (DNN) using a
physics-based loss function. To account for the vastly different behaviour of
thermal conduction and resin cure, we design a PINN consisting of two
disconnected subnetworks, and develop a sequential training algorithm that
mitigates instability present in traditional training methods. Further, we
incorporate explicit discontinuities into the DNN at the composite-tool
interface and enforce known physical behaviour directly in the loss function to
improve the solution near the interface. We train the PINN with a technique
that automatically adapts the weights on the loss terms corresponding to PDE,
boundary, interface, and initial conditions. Finally, we demonstrate that one
can include problem parameters as an input to the model -- resulting in a
surrogate that provides real-time simulation for a range of problem settings --
and that one can use transfer learning to significantly reduce the training
time for problem settings similar to that of an initial trained model. The
performance of the proposed PINN is demonstrated in multiple scenarios with
different material thicknesses and thermal boundary conditions.
Related papers
- Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
Physics-Informed Neural Networks (PINNs) have emerged as an influential technology, merging the swift and automated capabilities of machine learning with the precision and dependability of simulations grounded in theoretical physics.
However, wide adoption of PINNs is still hindered by reliability issues, particularly at extreme ends of the input parameter ranges.
We propose a domain knowledge-based modifications to the PINN architecture ensuring its correct behavior.
arXiv Detail & Related papers (2024-11-15T08:55:31Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
Physics-Informed Neural Network (PINN) is a novel multi-task learning framework useful for solving physical problems modeled using differential equations (DEs)
This paper reports a PINN-based approach to solve coupled systems involving multiple governing parameters (energy and species, along with multiple interface balance equations)
arXiv Detail & Related papers (2024-09-17T06:00:18Z) - A Posteriori Evaluation of a Physics-Constrained Neural Ordinary
Differential Equations Approach Coupled with CFD Solver for Modeling Stiff
Chemical Kinetics [4.125745341349071]
We extend the NeuralODE framework for stiff chemical kinetics by incorporating mass conservation constraints directly into the loss function during training.
This ensures that the total mass and the elemental mass are conserved, a critical requirement for reliable downstream integration with CFD solvers.
arXiv Detail & Related papers (2023-11-22T22:40:49Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Physics-informed attention-based neural network for solving non-linear
partial differential equations [6.103365780339364]
Physics-Informed Neural Networks (PINNs) have enabled significant improvements in modelling physical processes.
PINNs are based on simple architectures, and learn the behavior of complex physical systems by optimizing the network parameters to minimize the residual of the underlying PDE.
Here, we address the question of which network architectures are best suited to learn the complex behavior of non-linear PDEs.
arXiv Detail & Related papers (2021-05-17T14:29:08Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.