A Posteriori Evaluation of a Physics-Constrained Neural Ordinary
Differential Equations Approach Coupled with CFD Solver for Modeling Stiff
Chemical Kinetics
- URL: http://arxiv.org/abs/2312.00038v3
- Date: Mon, 4 Mar 2024 15:54:00 GMT
- Title: A Posteriori Evaluation of a Physics-Constrained Neural Ordinary
Differential Equations Approach Coupled with CFD Solver for Modeling Stiff
Chemical Kinetics
- Authors: Tadbhagya Kumar, Anuj Kumar, Pinaki Pal
- Abstract summary: We extend the NeuralODE framework for stiff chemical kinetics by incorporating mass conservation constraints directly into the loss function during training.
This ensures that the total mass and the elemental mass are conserved, a critical requirement for reliable downstream integration with CFD solvers.
- Score: 4.125745341349071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The high computational cost associated with solving for detailed chemistry
poses a significant challenge for predictive computational fluid dynamics (CFD)
simulations of turbulent reacting flows. These models often require solving a
system of coupled stiff ordinary differential equations (ODEs). While deep
learning techniques have been experimented with to develop faster surrogate
models, they often fail to integrate reliably with CFD solvers. This
instability arises because deep learning methods optimize for training error
without ensuring compatibility with ODE solvers, leading to accumulation of
errors over time. Recently, NeuralODE-based techniques have offered a promising
solution by effectively modeling chemical kinetics. In this study, we extend
the NeuralODE framework for stiff chemical kinetics by incorporating mass
conservation constraints directly into the loss function during training. This
ensures that the total mass and the elemental mass are conserved, a critical
requirement for reliable downstream integration with CFD solvers.
Proof-of-concept studies are performed with physics-constrained neuralODE
(PC-NODE) approach for homogeneous autoignition of hydrogen-air mixture over a
range of composition and thermodynamic conditions. Our results demonstrate that
this enhancement not only improves the physical consistency with respect to
mass conservation criteria but also ensures better robustness. Lastly, a
posteriori studies are performed wherein the trained PC-NODE model is coupled
with a 3D CFD solver for computing the chemical source terms. PC-NODE is shown
to be more accurate relative to the purely data-driven neuralODE approach.
Moreover, PC-NODE also exhibits robustness and generalizability to unseen
initial conditions from within (interpolative capability) as well as outside
(extrapolative capability) the training regime.
Related papers
- Physics-constrained coupled neural differential equations for one dimensional blood flow modeling [0.3749861135832073]
Computational cardiovascular flow modeling plays a crucial role in understanding blood flow dynamics.
Traditional 1D models based on finite element methods (FEM) often lack accuracy compared to 3D averaged solutions.
This study introduces a novel physics-constrained machine learning technique that enhances the accuracy of 1D blood flow models.
arXiv Detail & Related papers (2024-11-08T15:22:20Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics [0.0]
Melt pool dynamics in metal additive manufacturing (AM) is critical to process stability, microstructure formation, and final properties of the printed materials.
This paper provides a physics-informed machine learning (PIML) method by integrating neural networks with the governing physical laws to predict the melt pool dynamics.
The data-efficient PINN model is attributed to the soft penalty by incorporating governing partial differential equations (PDEs), initial conditions, and boundary conditions in the PINN model.
arXiv Detail & Related papers (2023-07-23T12:12:44Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
We develop a novel and versatile methodology of unified neural partial delay differential equations.
We augment existing/low-fidelity dynamical models directly in their partial differential equation (PDE) forms with both Markovian and non-Markovian neural network (NN) closure parameterizations.
We demonstrate the new generalized neural closure models (gnCMs) framework using four sets of experiments based on advecting nonlinear waves, shocks, and ocean acidification models.
arXiv Detail & Related papers (2023-01-15T21:57:43Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Long-time integration of parametric evolution equations with
physics-informed DeepONets [0.0]
We introduce an effective framework for learning infinite-dimensional operators that map random initial conditions to associated PDE solutions within a short time interval.
Global long-time predictions across a range of initial conditions can be then obtained by iteratively evaluating the trained model.
This introduces a new approach to temporal domain decomposition that is shown to be effective in performing accurate long-time simulations.
arXiv Detail & Related papers (2021-06-09T20:46:17Z) - Physics-Informed Neural Network for Modelling the Thermochemical Curing
Process of Composite-Tool Systems During Manufacture [11.252083314920108]
We present a PINN to simulate thermochemical evolution of a composite material on a tool undergoing cure in an autoclave.
We train the PINN with a technique that automatically adapts the weights on the loss terms corresponding to PDE, boundary, interface, and initial conditions.
The performance of the proposed PINN is demonstrated in multiple scenarios with different material thicknesses and thermal boundary conditions.
arXiv Detail & Related papers (2020-11-27T00:56:15Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.