論文の概要: Joint Extraction of Entity and Relation with Information Redundancy
Elimination
- arxiv url: http://arxiv.org/abs/2011.13565v1
- Date: Fri, 27 Nov 2020 05:47:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 01:29:03.382405
- Title: Joint Extraction of Entity and Relation with Information Redundancy
Elimination
- Title(参考訳): エンティティの協調抽出と情報冗長性除去との関係
- Authors: Yuanhao Shen and Jungang Han
- Abstract要約: 本稿では,冗長な情報の問題と,エンティティと関係抽出モデルの重なり合う関係を解くための共同抽出モデルを提案する。
このモデルは、関係のない情報を生成することなく、複数の関連エンティティを直接抽出することができる。
また、文をモデル化する繰り返しユニットの能力を高めるために、LSTMという名前のリカレントニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To solve the problem of redundant information and overlapping relations of
the entity and relation extraction model, we propose a joint extraction model.
This model can directly extract multiple pairs of related entities without
generating unrelated redundant information. We also propose a recurrent neural
network named Encoder-LSTM that enhances the ability of recurrent units to
model sentences. Specifically, the joint model includes three sub-modules: the
Named Entity Recognition sub-module consisted of a pre-trained language model
and an LSTM decoder layer, the Entity Pair Extraction sub-module which uses
Encoder-LSTM network to model the order relationship between related entity
pairs, and the Relation Classification sub-module including Attention
mechanism. We conducted experiments on the public datasets ADE and CoNLL04 to
evaluate the effectiveness of our model. The results show that the proposed
model achieves good performance in the task of entity and relation extraction
and can greatly reduce the amount of redundant information.
- Abstract(参考訳): 冗長な情報とエンティティと関係抽出モデルの重複関係の問題を解決するために,共同抽出モデルを提案する。
このモデルは、関係のない冗長な情報を生成することなく、複数の関連エンティティを直接抽出することができる。
また,エンコーダ-LSTMと呼ばれる再帰型ニューラルネットワークを提案し,文をモデル化する再帰型ユニットの能力を高める。
具体的には、名前付きエンティティ認識サブモジュールは、事前訓練された言語モデルとLSTMデコーダ層で構成され、エンコーダ-LSTMネットワークを使用して関連するエンティティペア間の順序関係をモデル化するエンティティペア抽出サブモジュールと、注意機構を含む関係分類サブモジュールである。
本モデルの有効性を評価するために, adeおよびconll04の公開データセットについて実験を行った。
提案手法は,エンティティと関係抽出のタスクにおいて良好な性能を示し,冗長な情報の量を大幅に削減できることを示す。
関連論文リスト
- EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Representation Surgery for Multi-Task Model Merging [57.63643005215592]
マルチタスク学習(MTL)は、複数のタスクから情報を統一されたバックボーンに圧縮し、計算効率と一般化を改善する。
最近の研究は、複数の独立して訓練されたモデルをマージして、共同トレーニングのために生データを収集する代わりにMLLを実行する。
既存のモデルマージスキームの表現分布を可視化することにより、マージモデルはしばしば表現バイアスのジレンマに悩まされる。
論文 参考訳(メタデータ) (2024-02-05T03:39:39Z) - Dealing with negative samples with multi-task learning on span-based
joint entity-relation extraction [0.7252027234425334]
近年のスパン型関節抽出モデルでは, 実体認識と関係抽出の両面で有意な優位性を示した。
本稿では,スパンベースマルチタスク・エンティティ・リレーション・ジョイント抽出モデルを提案する。
論文 参考訳(メタデータ) (2023-09-18T12:28:46Z) - CARE: Co-Attention Network for Joint Entity and Relation Extraction [0.0]
本稿では,共同エンティティと関係抽出のためのコ・アテンション・ネットワークを提案する。
提案手法では,サブタスク毎に異なる表現を学習するための並列符号化方式を採用する。
このアプローチのコアとなるのは,2つのサブタスク間の双方向のインタラクションをキャプチャするコアテンションモジュールです。
論文 参考訳(メタデータ) (2023-08-24T03:40:54Z) - Relational Extraction on Wikipedia Tables using Convolutional and Memory
Networks [6.200672130699805]
関係抽出(Relation extract、RE)は、テキスト内のエンティティ間の関係を抽出するタスクである。
我々は、エンティティをエンコードするために、畳み込みニューラルネットワーク(CNN)とBidirectional-Long Short Term Memory(BiLSTM)ネットワークからなる新しいモデルを導入する。
論文 参考訳(メタデータ) (2023-07-11T22:36:47Z) - A Two-Phase Paradigm for Joint Entity-Relation Extraction [11.92606118894611]
本研究では,スパンベースジョイントエンティティと関係抽出のための2相パラダイムを提案する。
2相のパラダイムは、第1相のエンティティと関係を分類し、第2相のエンティティと関係のタイプを予測することである。
複数のデータセットによる実験結果から,2相パラダイムで強化されたスパンベース継手抽出モデルと,その大域的特徴が,関節抽出タスクにおける従来の最先端スパンベースモデルより一貫して優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-08-18T06:40:25Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
スケルトンに基づく行動認識には,単純なマルチスケールセマンティクス誘導ニューラルネットワークが提案されている。
MS-SGNは、NTU60、NTU120、SYSUデータセットの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-11-07T03:50:50Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) は、2対のモダリティ表現で融合を行う新しいエンドツーエンドネットワークである。
モデルは、モダリティ間の既知の情報不均衡により、2つのバイモーダルペアを入力として取る。
論文 参考訳(メタデータ) (2021-07-28T23:33:42Z) - A Trigger-Sense Memory Flow Framework for Joint Entity and Relation
Extraction [5.059120569845976]
結合エンティティと関係抽出のためのTriMF(Trigger-Sense Memory Flow Framework)を提案する。
エンティティ認識と関係抽出タスクで学習したカテゴリ表現を記憶するためのメモリモジュールを構築する。
また,エンティティ認識と関係抽出の双方向インタラクションを強化するために,多レベルメモリフロー注目機構を設計する。
論文 参考訳(メタデータ) (2021-01-25T16:24:04Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。