論文の概要: Progressively Volumetrized Deep Generative Models for Data-Efficient
Contextual Learning of MR Image Recovery
- arxiv url: http://arxiv.org/abs/2011.13913v4
- Date: Sat, 12 Mar 2022 11:36:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 02:32:23.756642
- Title: Progressively Volumetrized Deep Generative Models for Data-Efficient
Contextual Learning of MR Image Recovery
- Title(参考訳): mr画像復元のためのデータ効率の高い文脈学習のための累積深層生成モデル
- Authors: Mahmut Yurt, Muzaffer \"Ozbey, Salman Ul Hassan Dar, Berk T{\i}naz,
Kader Karl{\i} O\u{g}uz, Tolga \c{C}ukur
- Abstract要約: 生成モデル(ProvoGAN)のための新しいプログレッシブボリューム化戦略を導入する。
ProvoGANは、複雑なボリューム画像復元タスクを、個別の直交次元にわたってタスク最適化された逐次断面積マッピングに分解する。
メインストリームのMRI再構成と合成タスクに関する総合的なデモでは、ProvoGANは最先端のボリュームモデルとクロスセクションモデルよりも優れたパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) offers the flexibility to image a given
anatomic volume under a multitude of tissue contrasts. Yet, scan time
considerations put stringent limits on the quality and diversity of MRI data.
The gold-standard approach to alleviate this limitation is to recover
high-quality images from data undersampled across various dimensions, most
commonly the Fourier domain or contrast sets. A primary distinction among
recovery methods is whether the anatomy is processed per volume or per
cross-section. Volumetric models offer enhanced capture of global contextual
information, but they can suffer from suboptimal learning due to elevated model
complexity. Cross-sectional models with lower complexity offer improved
learning behavior, yet they ignore contextual information across the
longitudinal dimension of the volume. Here, we introduce a novel progressive
volumetrization strategy for generative models (ProvoGAN) that serially
decomposes complex volumetric image recovery tasks into successive
cross-sectional mappings task-optimally ordered across individual rectilinear
dimensions. ProvoGAN effectively captures global context and recovers
fine-structural details across all dimensions, while maintaining low model
complexity and improved learning behaviour. Comprehensive demonstrations on
mainstream MRI reconstruction and synthesis tasks show that ProvoGAN yields
superior performance to state-of-the-art volumetric and cross-sectional models.
- Abstract(参考訳): 磁気共鳴イメージング(mri)は、多くの組織コントラストの下で特定の解剖学的ボリュームを撮像する柔軟性を提供する。
しかし、スキャン時間の考慮はMRIデータの質と多様性に厳しい制限を与えた。
この制限を緩和するためのゴールドスタンダードのアプローチは、様々な次元にまたがるデータから、最も一般的にはフーリエ領域やコントラスト集合から高品質な画像を取り戻すことである。
回復法の主な違いは、解剖が体積ごとに処理されるか、断面毎に処理されるかである。
ボリュームモデルは、グローバルな文脈情報の取り込みを向上するが、モデルの複雑さの増大により、最適以下の学習に苦しむことがある。
複雑さの低い断面モデルは学習行動を改善するが、ボリュームの長手次元にわたってコンテキスト情報を無視する。
本稿では,複雑な体積画像復元タスクを逐次的に分解する生成モデル(provogan)のための新しい累積化戦略について紹介する。
provoganは、グローバルコンテキストを効果的に捉えて、モデルの複雑さと学習行動の改善を維持しながら、すべての次元にわたって微細構造の詳細を復元する。
メインストリームのMRI再構成と合成タスクに関する総合的なデモでは、ProvoGANは最先端のボリュームモデルとクロスセクションモデルよりも優れたパフォーマンスを示す。
関連論文リスト
- Zero-shot Dynamic MRI Reconstruction with Global-to-local Diffusion Model [17.375064910924717]
本稿では,Glob-al-to-local Diffusion Model(Glob-al-to-local Diffusion Model)と呼ばれる時間インターリーブ取得方式に基づく動的MRI再構成手法を提案する。
提案手法は, 騒音の低減と保存の両面において良好に機能し, 教師付き手法に匹敵する再現性を実現する。
論文 参考訳(メタデータ) (2024-11-06T07:40:27Z) - Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
圧縮センシングMRI(Compressed Sensing MRI)は、身体の内部解剖像をアンダーサンプルと圧縮された測定値から再構成する。
ディープニューラルネットワークは、高度にアンサンプされた測定結果から高品質なイメージを再構築する大きな可能性を示している。
CS-MRIにおけるサブサンプリングパターンや画像解像度に頑健な統一モデルを提案する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [7.281993256973667]
本研究は,TC-KANReconと命名された,革新的な条件付き拡散モデルを提案する。
Multi-Free U-KAN (MF-UKAN) モジュールと動的クリッピング戦略が組み込まれている。
実験により,提案手法は定性評価と定量的評価の両方において,他のMRI再建法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-11T06:31:56Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Unsupervised Adaptive Implicit Neural Representation Learning for
Scan-Specific MRI Reconstruction [8.721677700107639]
アンダーサンプリングにおけるスパーシリティレベルやパターンに制約されることなく、再構成品質を向上させる、教師なし適応型粗大化フレームワークを提案する。
我々は,獲得したk空間信号の自己超越的利用を段階的に洗練する,新しい学習戦略を統合する。
提案手法は,8倍のアンダーサンプリングを行うため,現在最先端のスキャン特異的MRI再構成技術より優れている。
論文 参考訳(メタデータ) (2023-12-01T16:00:16Z) - One for Multiple: Physics-informed Synthetic Data Boosts Generalizable
Deep Learning for Fast MRI Reconstruction [20.84830225817378]
Deep Learning (DL)は、高速MRI画像再構成に有効であることが証明されているが、その広範な適用性は制限されている。
本稿では,高速MRIのための物理インフォームド・シンセティック・データ学習フレームワークPISFを提案する。
PISFは、訓練された1つのモデルを通して、マルチシナリオMRI再構成のための一般化されたDLを可能にすることで、画期的な成果を上げている。
論文 参考訳(メタデータ) (2023-07-25T03:11:24Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
対応する画像分解能の喪失は、医用画像診断の全体的な性能を低下させる。
ディープラーニングベースのシングルイメージスーパーレゾリューション(SISR)アルゴリズムは、全体的な診断フレームワークに革命をもたらした。
本研究は,低周波データから高頻度情報を学習する深層マルチアテンションモジュールを用いたGAN(Generative Adversarial Network)を提案する。
論文 参考訳(メタデータ) (2021-10-22T10:13:46Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。