論文の概要: UPCMR: A Universal Prompt-guided Model for Random Sampling Cardiac MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2502.14899v1
- Date: Tue, 18 Feb 2025 07:44:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:11:35.524055
- Title: UPCMR: A Universal Prompt-guided Model for Random Sampling Cardiac MRI Reconstruction
- Title(参考訳): UPCMR : ランダムサンプリング心磁図再構成のためのユニバーサルプロンプト誘導モデル
- Authors: Donghang Lyu, Chinmay Rao, Marius Staring, Matthias J. P. van Osch, Mariya Doneva, Hildo J. Lamb, Nicola Pezzotti,
- Abstract要約: 心磁気共鳴画像再構成のためのユニバーサルアンロールモデルであるUPCMRを紹介する。
学習可能なプロンプトは2種類あり、アンサンプ固有のプロンプトと空間固有のプロンプトが組み込まれ、各ブロックにUNet構造が組み込まれている。
効率的なトレーニング戦略により、すべてのランダムサンプリングシナリオにおける再構成画像の品質を高く向上させる。
- 参考スコア(独自算出の注目度): 1.2773749417703923
- License:
- Abstract: Cardiac magnetic resonance imaging (CMR) is vital for diagnosing heart diseases, but long scan time remains a major drawback. To address this, accelerated imaging techniques have been introduced by undersampling k-space, which reduces the quality of the resulting images. Recent deep learning advancements aim to speed up scanning while preserving quality, but adapting to various sampling modes and undersampling factors remains challenging. Therefore, building a universal model is a promising direction. In this work, we introduce UPCMR, a universal unrolled model designed for CMR reconstruction. This model incorporates two kinds of learnable prompts, undersampling-specific prompt and spatial-specific prompt, and integrates them with a UNet structure in each block. Overall, by using the CMRxRecon2024 challenge dataset for training and validation, the UPCMR model highly enhances reconstructed image quality across all random sampling scenarios through an effective training strategy compared to some traditional methods, demonstrating strong adaptability potential for this task.
- Abstract(参考訳): 心臓磁気共鳴画像(CMR)は心臓疾患の診断に不可欠であるが、長い走査時間が大きな欠点である。
これを解決するために、k空間をアンサンプすることで高速撮像技術が導入され、結果として得られる画像の品質を低下させる。
最近のディープラーニングの進歩は、品質を維持しながらスキャンを高速化することを目的としているが、様々なサンプリングモードやアンサンプ要因に適応することは依然として困難である。
したがって、普遍的なモデルの構築は有望な方向である。
本稿では,CMR再構成のためのユニバーサルアンロールモデルであるUPCMRを紹介する。
このモデルは、2種類の学習可能なプロンプトを組み込み、アンサンプ固有のプロンプトと空間固有のプロンプトをアンサンプし、各ブロックのUNet構造と統合する。
全体として、トレーニングとバリデーションのためにCMRxRecon2024チャレンジデータセットを使用することで、UPCMRモデルは、従来の方法と比較して効果的なトレーニング戦略を通じて、すべてのランダムサンプリングシナリオにわたる再構成された画像品質を高く向上させ、このタスクに強力な適応可能性を示す。
関連論文リスト
- On the Foundation Model for Cardiac MRI Reconstruction [6.284878525302227]
本稿では,適応アンロール,チャネルシフト,パターンとコントラスト-プロンプト-UNetを用いた基礎モデルを提案する。
PCP-UNetは画像コントラストとサンプリングパターンプロンプトを備える。
論文 参考訳(メタデータ) (2024-11-15T18:15:56Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [8.301957310590712]
本研究は,TC-KANReconと命名された,革新的な条件付き拡散モデルを提案する。
Multi-Free U-KAN (MF-UKAN) モジュールと動的クリッピング戦略が組み込まれている。
実験により,提案手法は定性評価と定量的評価の両方において,他のMRI再建法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-11T06:31:56Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
ディープラーニングベースのCMRイメージングアルゴリズムへの関心が高まっている。
ディープラーニング手法は大規模なトレーニングデータセットを必要とする。
このデータセットには300人の被験者のマルチコントラスト、マルチビュー、マルチスライス、マルチコイルCMRイメージングデータが含まれている。
論文 参考訳(メタデータ) (2023-09-19T15:14:42Z) - Generalized Implicit Neural Representation for Efficient MRI Parallel Imaging Reconstruction [16.63720411275398]
本研究では、MRI PI再構成のための一般化暗黙的神経表現(INR)に基づくフレームワークを提案する。
フレームワークのINRモデルは、完全にサンプリングされたMR画像を空間座標と以前のボクセル固有の特徴の連続関数として扱う。
公開されているMRIデータセットの実験は、複数の加速度因子で画像を再構成する際の提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-12T09:07:03Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z) - Progressively Volumetrized Deep Generative Models for Data-Efficient
Contextual Learning of MR Image Recovery [0.0]
生成モデル(ProvoGAN)のための新しいプログレッシブボリューム化戦略を導入する。
ProvoGANは、複雑なボリューム画像復元タスクを、個別の直交次元にわたってタスク最適化された逐次断面積マッピングに分解する。
メインストリームのMRI再構成と合成タスクに関する総合的なデモでは、ProvoGANは最先端のボリュームモデルとクロスセクションモデルよりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-11-27T18:55:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。