Quantum Computing for Atomic and Molecular Resonances
- URL: http://arxiv.org/abs/2011.13999v3
- Date: Thu, 6 May 2021 04:33:10 GMT
- Title: Quantum Computing for Atomic and Molecular Resonances
- Authors: Teng Bian and Sabre Kais
- Abstract summary: The complex-scaling method can be used to calculate molecular resonances within the Born-Oppenheimer approximation.
We propose techniques to simulate resonances on a quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The complex-scaling method can be used to calculate molecular resonances
within the Born-Oppenheimer approximation, assuming the electronic coordinates
are dilated independently of the nuclear coordinates. With this method, one
will calculate the complex energy of a non-Hermitian Hamiltonian, whose real
part is associated with the resonance position and the imaginary part is the
inverse of the lifetime. In this study, we propose techniques to simulate
resonances on a quantum computer. First, we transformed the scaled molecular
Hamiltonian to second-quantization and then used the Jordan-Wigner
transformation to transform the scaled Hamiltonian to the qubit space. To
obtain the complex eigenvalues, we introduce the Direct Measurement method,
which is applied to obtain the resonances of a simple one-dimensional model
potential that exhibits pre-dissociating resonances analogous to those found in
diatomic molecules. Finally, we applied the method to simulate the resonances
of the H$_2^-$ molecule. Numerical results from the IBM Qiskit simulators and
IBM quantum computers verify our techniques.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - On The Study Of Partial Qubit Hamiltonian For Efficient Molecular
Simulation Using Variational Quantum Eigensolvers [0.0]
We present a new approach for extracting information from the partial qubit Hamiltonian of simple molecules to design more efficient variational quantum eigensolvers.
The results of this study have the potential to demonstrate the potential advancement in the field of quantum computing and its implementation in quantum chemistry.
arXiv Detail & Related papers (2023-08-24T03:25:05Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum computation of molecular structure using data from
challenging-to-classically-simulate nuclear magnetic resonance experiments [0.0]
We propose a quantum algorithm for inferring the molecular nuclear spin Hamiltonian from time-resolved measurements of spin-spinors.
We demonstrate the ability to directly estimate the Jacobian and Hessian of the corresponding learning problem on a quantum computer.
arXiv Detail & Related papers (2021-09-05T20:20:49Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Mapping quantum chemical dynamics problems onto spin-lattice simulators [0.5249805590164901]
We provide a framework which allows for the solution of quantum chemical nuclear dynamics by mapping these to quantum spin-lattice simulators.
Our approach represents a paradigm shift in the methods used to study quantum nuclear dynamics.
arXiv Detail & Related papers (2021-03-12T17:32:52Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Sparse-Hamiltonian approach to the time evolution of molecules on
quantum computers [0.0]
We explore the possibility of mapping the molecular problem onto a sparse Hubbard-like Hamiltonian.
This allows a Green's-function-based approach to electronic structure via a hybrid quantum-classical algorithm.
arXiv Detail & Related papers (2020-09-26T20:32:06Z) - Microcanonical and finite temperature ab initio molecular dynamics
simulations on quantum computers [0.0]
Ab initio molecular dynamics (AIMD) is a powerful tool to predict properties of molecular and condensed matter systems.
We provide solutions for the alleviation of the statistical noise associated to the measurements of the expectation values of energies and forces.
We also propose a Langevin dynamics algorithm for the simulation of canonical, i.e., constant temperature, dynamics.
arXiv Detail & Related papers (2020-08-18T20:24:27Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.