Machine Intelligent Techniques for Ramp Event Prediction in Offshore and
Onshore Wind Farms
- URL: http://arxiv.org/abs/2011.14220v1
- Date: Sat, 28 Nov 2020 21:21:42 GMT
- Title: Machine Intelligent Techniques for Ramp Event Prediction in Offshore and
Onshore Wind Farms
- Authors: Harsh S. Dhiman, Dipankar Deb
- Abstract summary: Wind resource assessment for onshore and offshore wind farms aids in accurate forecasting and analyzing nature of ramp events.
A large ramp event in a short time duration is likely to cause damage to the wind farm connected to the utility grid.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Globally, wind energy has lessened the burden on conventional fossil fuel
based power generation. Wind resource assessment for onshore and offshore wind
farms aids in accurate forecasting and analyzing nature of ramp events. From an
industrial point of view, a large ramp event in a short time duration is likely
to cause damage to the wind farm connected to the utility grid. In this
manuscript, ramp events are predicted using hybrid machine intelligent
techniques such as Support vector regression (SVR) and its variants, random
forest regression and gradient boosted machines for onshore and offshore wind
farm sites. Wavelet transform based signal processing technique is used to
extract features from wind speed. Results reveal that SVR based prediction
models gives the best forecasting performance out of all models. In addition,
gradient boosted machines (GBM) predicts ramp events closer to Twin support
vector regression (TSVR) model. Furthermore, the randomness in ramp power is
evaluated for onshore and offshore wind farms by calculating log energy entropy
of features obtained from wavelet decomposition and empirical model
decomposition.
Related papers
- FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Ultra-short-term multi-step wind speed prediction for wind farms based on adaptive noise reduction technology and temporal convolutional network [0.0]
This study proposes a new wind speed prediction model based on data noise reduction technology, temporal convolutional network (TCN), and gated recurrent unit (GRU)
The proposed model was validated on three wind farms in Shandong Province.
arXiv Detail & Related papers (2023-11-27T03:53:19Z) - An unsupervised learning approach for predicting wind farm power and
downstream wakes using weather patterns [0.0]
We develop a novel wind energy workflow that combines weather patterns derived from unsupervised clustering techniques with numerical weather prediction models.
We show that our long-term predictions agree with those from a year of WRF simulations but require less than 2% of the computational time.
Our approach facilitates multi-year predictions of power output and downstream farm wakes, by providing a fast, accurate and flexible methodology.
arXiv Detail & Related papers (2023-02-12T10:05:25Z) - Integrating wind variability to modelling wind-ramp events using a
non-binary ramp function and deep learning models [0.0]
We discuss limitations of current predictive practices and explore the use of Machine Learning methods to enhance wind ramp event classification and prediction.
We additionally outline a design for a novel approach to wind ramp prediction, in which high-resolution wind fields are incorporated to the modelling of wind power.
arXiv Detail & Related papers (2022-08-31T10:40:35Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Uncertainty Set Prediction of Aggregated Wind Power Generation based on
Bayesian LSTM and Spatio-Temporal Analysis [42.68418705495523]
This paper focuses on the uncertainty set prediction of the aggregated generation of geographically distributed wind farms.
A Spatio-temporal model is proposed to learn the dynamic features from partial observation in near-surface wind fields of neighboring wind farms.
Numerical testing results based on the actual data with 6 wind farms in northwest China show that the uncertainty set of aggregated wind generation is less volatile than that of a single wind farm.
arXiv Detail & Related papers (2021-10-07T11:57:16Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z) - Hybrid Neuro-Evolutionary Method for Predicting Wind Turbine Power
Output [6.411829871947649]
We use historical data in the supervisory control and data acquisition (SCADA) systems as input to estimate the power output from an onshore wind farm in Sweden.
With the prior knowledge that the underlying wind patterns are highly non-linear and diverse, we combine a self-adaptive differential evolution (SaDE) algorithm.
We show that our approach outperforms its counterparts.
arXiv Detail & Related papers (2020-04-02T04:22:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.