論文の概要: Malaria Detection and Classificaiton
- arxiv url: http://arxiv.org/abs/2011.14329v1
- Date: Sun, 29 Nov 2020 10:04:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-07 12:08:27.950715
- Title: Malaria Detection and Classificaiton
- Title(参考訳): マラリアの検出と分類
- Authors: Ruskin Raj Manku and Ayush Sharma and Anand Panchbhai
- Abstract要約: 世界保健機関(WHO)によると、マラリアは世界的な懸念の種である。
本研究では,マラリアの診断のための枠組みを提唱した。
我々は,第1層のFaster-RCNNを用いて感染した細胞を検知し,収穫した細胞を分離したニューラルネットワークに給餌して分類する2層アプローチを採用した。
- 参考スコア(独自算出の注目度): 0.38233569758620056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Malaria is a disease of global concern according to the World Health
Organization. Billions of people in the world are at risk of Malaria today.
Microscopy is considered the gold standard for Malaria diagnosis. Microscopic
assessment of blood samples requires the need of trained professionals who at
times are not available in rural areas where Malaria is a problem. Full
automation of Malaria diagnosis is a challenging task. In this work, we put
forward a framework for diagnosis of malaria. We adopt a two layer approach,
where we detect infected cells using a Faster-RCNN in the first layer, crop
them out, and feed the cropped cells to a seperate neural network for
classification. The proposed methodology was tested on an openly available
dataset, this will serve as a baseline for the future methods as currently
there is no common dataset on which results are reported for Malaria Diagnosis.
- Abstract(参考訳): 世界保健機関(who)によると、マラリアは世界的な懸念の病である。
世界中の何十億という人々が マラリアのリスクにさらされています
顕微鏡検査はマラリア診断における金の基準と考えられている。
血液サンプルの微視的評価には、マラリアが問題となっている農村部では使用できない訓練を受けた専門家が必要となる。
マラリア診断の完全自動化は難しい課題である。
本研究では,マラリアの診断のための枠組みを提唱した。
我々は,第1層のFaster-RCNNを用いて感染細胞を検知し,収穫した細胞を分離したニューラルネットワークに供給して分類する2層アプローチを採用する。
提案手法は公開されているデータセットでテストされ、マラリア診断の結果が報告される一般的なデータセットがないため、将来のメソッドのベースラインとして機能する。
関連論文リスト
- Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
本稿では,レアな疾患の診断におけるLarge Language Models (LLMs) の性能を評価するために,レアな疾患問合せデータセット(ReDis-QA)を導入する。
ReDis-QAデータセットでは1360の高品質な質問応答ペアを収集し,205の稀な疾患をカバーした。
その後、いくつかのオープンソースのLCMをベンチマークし、希少疾患の診断がこれらのモデルにとって重要な課題であることを示した。
実験の結果,ReCOPは,ReDis-QAデータセット上でのLCMの精度を平均8%向上できることがわかった。
論文 参考訳(メタデータ) (2024-08-15T21:09:09Z) - Malaria Cell Detection Using Deep Neural Networks [1.1237179306040028]
マラリアは世界中で最も深刻な公衆衛生上の懸念の1つだ。
血液スミアの顕微鏡検査などの従来の診断法は、労働集約的である。
本研究の目的は, 深層学習によるマラリア感染細胞の自動検出である。
論文 参考訳(メタデータ) (2024-06-28T15:44:55Z) - CodaMal: Contrastive Domain Adaptation for Malaria Detection in Low-Cost Microscopes [51.5625352379093]
マラリアは世界中で大きな問題であり、診断には低コストの顕微鏡(LCM)で効果的に動作するスケーラブルなソリューションが必要である。
ディープラーニングに基づく手法は、顕微鏡画像からコンピュータ支援による診断に成功している。
これらの方法には、マラリア原虫の感染した細胞とその生活段階を示す注釈画像が必要である。
LCMからの注記画像は、高精細顕微鏡(HCM)からの注記画像と比較して医療専門家の負担を著しく増大させる
論文 参考訳(メタデータ) (2024-02-16T06:57:03Z) - Simulating Malaria Detection in Laboratories using Deep Learning [0.0]
マラリアは通常、血液スミアの小さなサンプルを調べることで微生物学者によって診断される。
早期に診断され適切な治療を受けた場合、マラリア感染による死亡率の低下が可能である。
WHOは、2030年にはマラリアの発生率と死亡率を90%削減し、35カ国でマラリアを除去するという大胆な目標を掲げている。
論文 参考訳(メタデータ) (2023-03-21T11:23:59Z) - Auditing Algorithmic Fairness in Machine Learning for Health with
Severity-Based LOGAN [70.76142503046782]
臨床予測タスクにおいて,局所バイアスを自動検出するSLOGANを用いて,機械学習ベースの医療ツールを補足することを提案する。
LOGANは、患者の重症度と過去の医療史における集団バイアス検出を文脈化することにより、既存のツールであるLOcal Group biAs detectioNに適応する。
SLOGANは, クラスタリング品質を維持しながら, 患者群の75%以上において, SLOGANよりも高い公平性を示す。
論文 参考訳(メタデータ) (2022-11-16T08:04:12Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - End-to-end Malaria Diagnosis and 3D Cell Rendering with Deep Learning [0.0]
マラリアは寄生虫感染であり、世界的な健康に重大な負担を与える。
30秒ごとに1人の子供が死亡し、毎年100万人以上が死亡している。
マラリアを診断するための現在の金の基準は、顕微鏡、試薬、その他の装置を必要とし、低社会経済的括弧の患者はアクセスできない。
論文 参考訳(メタデータ) (2021-07-08T08:13:11Z) - A Dataset and Benchmark for Malaria Life-Cycle Classification in Thin
Blood Smear Images [7.113350536579545]
マラリア顕微鏡、寄生虫Plasmodiumを検出するステンド血液スライドの顕微鏡検査は、マラリアを検出するための金標準であると考えられています。
本研究では,染色フィルム写真中のプラスモジウム寄生虫を自動的に検出(局在化)する深層学習に基づく手法を提案する。
機械学習に基づくマラリア顕微鏡の研究を容易にするために,新しい大規模顕微鏡画像マラリアデータセットを提案する。
論文 参考訳(メタデータ) (2021-02-17T11:44:52Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - MOSQUITO-NET: A deep learning based CADx system for malaria diagnosis
along with model interpretation using GradCam and class activation maps [9.01199960262149]
マラリアは世界でも最も致命的な病気の1つで、毎年数千人が死亡している。
マラリアの原因となる寄生虫は、科学的にはプラスモジウムと呼ばれ、ヒトの赤血球に感染する。
マラリアの診断には、顕微鏡的血腫の医療従事者による寄生細胞の同定と手動計測が必要である。
論文 参考訳(メタデータ) (2020-06-17T13:00:30Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。