論文の概要: Simulating Malaria Detection in Laboratories using Deep Learning
- arxiv url: http://arxiv.org/abs/2303.11759v1
- Date: Tue, 21 Mar 2023 11:23:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-22 15:26:39.011659
- Title: Simulating Malaria Detection in Laboratories using Deep Learning
- Title(参考訳): 深層学習によるマラリア検出のシミュレーション
- Authors: Onyekachukwu R. Okonji
- Abstract要約: マラリアは通常、血液スミアの小さなサンプルを調べることで微生物学者によって診断される。
早期に診断され適切な治療を受けた場合、マラリア感染による死亡率の低下が可能である。
WHOは、2030年にはマラリアの発生率と死亡率を90%削減し、35カ国でマラリアを除去するという大胆な目標を掲げている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Malaria is usually diagnosed by a microbiologist by examining a small sample
of blood smear. Reducing mortality from malaria infection is possible if it is
diagnosed early and followed with appropriate treatment. While the WHO has set
audacious goals of reducing malaria incidence and mortality rates by 90% in
2030 and eliminating malaria in 35 countries by that time, it still remains a
difficult challenge. Computer-assisted diagnostics are on the rise these days
as they can be used effectively as a primary test in the absence of or
providing assistance to a physician or pathologist. The purpose of this paper
is to describe an approach to detecting, localizing and counting parasitic
cells in blood sample images towards easing the burden on healthcare workers.
- Abstract(参考訳): マラリアは通常、血液スミアの小さなサンプルを調べることで微生物学者によって診断される。
早期に診断され適切な治療を受けた場合、マラリア感染による死亡率の低下が可能である。
WHOは、2030年にはマラリアの発生率と死亡率を90%削減し、35カ国でマラリアを除去するという大胆な目標を掲げているが、依然として難しい課題である。
コンピュータ支援診断は、医師や病理医の欠如、または支援の提供において、一次検査として効果的に使用できるため、近年増加傾向にある。
本稿では,血液サンプル画像中の寄生細胞の検出,局在化,計数を行い,医療従事者の負担を軽減するためのアプローチについて述べる。
関連論文リスト
- Empowering Tuberculosis Screening with Explainable Self-Supervised Deep Neural Networks [66.59360534642579]
結核は、特に資源に制限された人口や遠隔地において、世界的な健康危機として存続している。
本研究では,結核症例検診に適した自己指導型自己学習ネットワークを提案する。
ネットワーク全体の精度は98.14%で、それぞれ95.72%と99.44%という高いリコール率と精度を示している。
論文 参考訳(メタデータ) (2024-06-19T18:10:06Z) - CodaMal: Contrastive Domain Adaptation for Malaria Detection in Low-Cost Microscopes [51.5625352379093]
マラリアは世界中で大きな問題であり、診断には低コストの顕微鏡(LCM)で効果的に動作するスケーラブルなソリューションが必要である。
ディープラーニングに基づく手法は、顕微鏡画像からコンピュータ支援による診断に成功している。
これらの方法には、マラリア原虫の感染した細胞とその生活段階を示す注釈画像が必要である。
LCMからの注記画像は、高精細顕微鏡(HCM)からの注記画像と比較して医療専門家の負担を著しく増大させる
論文 参考訳(メタデータ) (2024-02-16T06:57:03Z) - Evaluate underdiagnosis and overdiagnosis bias of deep learning model on
primary open-angle glaucoma diagnosis in under-served patient populations [64.91773761529183]
原発性オープンアングル緑内障(POAG)はアメリカにおける盲目の主要な原因である。
深層学習は眼底画像を用いたPOAGの検出に広く用いられている。
臨床診断における人間のバイアスは、広く使われているディープラーニングモデルに反映され増幅される可能性がある。
論文 参考訳(メタデータ) (2023-01-26T18:53:09Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
我々は,肺POCUS画像からの新型コロナウイルススクリーニングに適した,高効率で自己注意型の深層畳み込みニューラルネットワーク設計であるCOVID-Net USを紹介した。
実験の結果、提案されたCOVID-Net USは、アーキテクチャの複雑さが353倍、計算の複雑さが62倍、Raspberry Piで14.3倍高速なAUCを達成できることがわかった。
リソース制約のある環境において安価な医療と人工知能を提唱するために、COVID-Net USをオープンソースにし、COVID-Netオープンソースイニシアチブの一部として公開しました。
論文 参考訳(メタデータ) (2021-08-05T16:47:33Z) - End-to-end Malaria Diagnosis and 3D Cell Rendering with Deep Learning [0.0]
マラリアは寄生虫感染であり、世界的な健康に重大な負担を与える。
30秒ごとに1人の子供が死亡し、毎年100万人以上が死亡している。
マラリアを診断するための現在の金の基準は、顕微鏡、試薬、その他の装置を必要とし、低社会経済的括弧の患者はアクセスできない。
論文 参考訳(メタデータ) (2021-07-08T08:13:11Z) - A Dataset and Benchmark for Malaria Life-Cycle Classification in Thin
Blood Smear Images [7.113350536579545]
マラリア顕微鏡、寄生虫Plasmodiumを検出するステンド血液スライドの顕微鏡検査は、マラリアを検出するための金標準であると考えられています。
本研究では,染色フィルム写真中のプラスモジウム寄生虫を自動的に検出(局在化)する深層学習に基づく手法を提案する。
機械学習に基づくマラリア顕微鏡の研究を容易にするために,新しい大規模顕微鏡画像マラリアデータセットを提案する。
論文 参考訳(メタデータ) (2021-02-17T11:44:52Z) - Localization of Malaria Parasites and White Blood Cells in Thick Blood
Smears [5.36646793661301]
本研究はマラリア原虫および白血球(WBCs)の局在と数に対するエンドツーエンドアプローチを提案する。
血液スミア画像のスライスデータセットを用いて,得られたデジタル画像を解析するモデルを構築した。
予備的な結果は、我々のディープラーニングアプローチがマラリア原虫とWBCの数を確実に検出し、返却していることを示している。
論文 参考訳(メタデータ) (2020-12-03T15:14:38Z) - Malaria Detection and Classificaiton [0.38233569758620056]
世界保健機関(WHO)によると、マラリアは世界的な懸念の種である。
本研究では,マラリアの診断のための枠組みを提唱した。
我々は,第1層のFaster-RCNNを用いて感染した細胞を検知し,収穫した細胞を分離したニューラルネットワークに給餌して分類する2層アプローチを採用した。
論文 参考訳(メタデータ) (2020-11-29T10:04:01Z) - Classification supporting COVID-19 diagnostics based on patient survey
data [82.41449972618423]
新型コロナウイルス患者の効果的なスクリーニングを可能にするロジスティック回帰とXGBoost分類器が作成された。
得られた分類モデルは、DECODEサービス(decode.polsl.pl)の基礎を提供し、COVID-19病患者のスクリーニング支援に役立てることができる。
このデータセットは、3,000以上のサンプルで構成されており、ポーランドの病院で収集されたアンケートに基づいている。
論文 参考訳(メタデータ) (2020-11-24T17:44:01Z) - A New Screening Method for COVID-19 based on Ocular Feature Recognition
by Machine Learning Tools [66.20818586629278]
コロナウイルス感染症2019(COVID-19)は、数百万人に影響している。
一般的なCCDやCMOSカメラで撮影された視線領域の画像を分析する新しいスクリーニング手法は、新型コロナウイルスの急激なリスクスクリーニングを確実に実現する可能性がある。
論文 参考訳(メタデータ) (2020-09-04T00:50:27Z) - MOSQUITO-NET: A deep learning based CADx system for malaria diagnosis
along with model interpretation using GradCam and class activation maps [9.01199960262149]
マラリアは世界でも最も致命的な病気の1つで、毎年数千人が死亡している。
マラリアの原因となる寄生虫は、科学的にはプラスモジウムと呼ばれ、ヒトの赤血球に感染する。
マラリアの診断には、顕微鏡的血腫の医療従事者による寄生細胞の同定と手動計測が必要である。
論文 参考訳(メタデータ) (2020-06-17T13:00:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。