論文の概要: Overcoming Measurement Inconsistency in Deep Learning for Linear Inverse
Problems: Applications in Medical Imaging
- arxiv url: http://arxiv.org/abs/2011.14387v2
- Date: Mon, 31 May 2021 10:28:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-07 08:55:10.100076
- Title: Overcoming Measurement Inconsistency in Deep Learning for Linear Inverse
Problems: Applications in Medical Imaging
- Title(参考訳): 線形逆問題に対する深層学習における測定矛盾の克服:医用イメージングへの応用
- Authors: Marija Vella, Jo\~ao F. C. Mota
- Abstract要約: ディープニューラルネットワーク(Deep Neural Network, DNN)は、線形逆問題の解法である。
本稿では,DNNの出力を,測定一貫性を強制する最適化アルゴリズムで後処理するフレームワークを提案する。
MR画像を用いた実験により,本手法による測定の整合性向上は再建性能を大きく向上させる可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.9137554315375922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable performance of deep neural networks (DNNs) currently makes
them the method of choice for solving linear inverse problems. They have been
applied to super-resolve and restore images, as well as to reconstruct MR and
CT images. In these applications, DNNs invert a forward operator by finding,
via training data, a map between the measurements and the input images. It is
then expected that the map is still valid for the test data. This framework,
however, introduces measurement inconsistency during testing. We show that such
inconsistency, which can be critical in domains like medical imaging or
defense, is intimately related to the generalization error. We then propose a
framework that post-processes the output of DNNs with an optimization algorithm
that enforces measurement consistency. Experiments on MR images show that
enforcing measurement consistency via our method can lead to large gains in
reconstruction performance.
- Abstract(参考訳): 現在、ディープニューラルネットワーク(DNN)の顕著な性能は、線形逆問題の解法として選択されている。
超解像と復元像に応用され、MRIやCT画像の再構成にも応用されている。
これらのアプリケーションでは、DNNはトレーニングデータを介して、測定値と入力画像の間のマップを見つけることでフォワード演算子を反転させる。
そして、マップがテストデータに対して有効であることが期待されます。
しかし、このフレームワークはテスト中に測定の不整合を導入する。
医用画像や防衛などの領域において重要な矛盾は, 一般化誤差と密接に関連していることが示される。
次に、DNNの出力を計測一貫性を強制する最適化アルゴリズムで後処理するフレームワークを提案する。
MR画像を用いた実験により,本手法による測定の整合性が再現性能に大きな向上をもたらすことが示された。
関連論文リスト
- Measurement-Consistent Networks via a Deep Implicit Layer for Solving
Inverse Problems [0.0]
エンドツーエンドのディープニューラルネットワーク(DNN)は、逆問題を解決するための最先端のSOTA(State-of-the-art)になっている。
これらのネットワークは、トレーニングパイプラインの小さなバリエーションに敏感であり、小さなが重要な詳細を再構築することができないことが多い。
本稿では,逆問題に対して任意のDNNを計測一貫性に変換するフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-06T17:05:04Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Solving Inverse Problems in Medical Imaging with Score-Based Generative
Models [87.48867245544106]
CT(Computed Tomography)とMRI(Magnetic Resonance Imaging)における医用画像の再構成は重要な逆問題である
機械学習に基づく既存のソリューションは通常、測定結果を医療画像に直接マッピングするモデルを訓練する。
本稿では,最近導入されたスコアベース生成モデルを利用して,逆問題解決のための教師なし手法を提案する。
論文 参考訳(メタデータ) (2021-11-15T05:41:12Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problem は、デブロアリングや超解像など、多くの画像処理アプリケーションに現れる。
本稿では,一般化されたSteinUnbiased Risk Estimator(GSURE)の「投影変換」とCNNによる潜在画像のパラメータ化を含む損失関数の最小化に基づく,新たな画像復元フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-04T08:52:46Z) - Deep Probabilistic Imaging: Uncertainty Quantification and Multi-modal
Solution Characterization for Computational Imaging [11.677576854233394]
本稿では,再構成の不確かさを定量化するために,変分深い確率的イメージング手法を提案する。
Deep Probabilistic Imagingは、未学習の深部生成モデルを用いて、未観測画像の後部分布を推定する。
論文 参考訳(メタデータ) (2020-10-27T17:23:09Z) - Joint reconstruction and bias field correction for undersampled MR
imaging [7.409376558513677]
k空間をMRIでアンサンプすることで、貴重な取得時間を節約できるが、結果として不適切な逆転問題が発生する。
ディープラーニングのスキームは、トレーニングデータと、テスト時に再構成される画像の違いに影響を受けやすい。
本研究は,再建問題のバイアス場に対する感度に対処し,再設計において明確にモデル化することを提案する。
論文 参考訳(メタデータ) (2020-07-26T12:58:34Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z) - Improving the Interpretability of fMRI Decoding using Deep Neural
Networks and Adversarial Robustness [1.254120224317171]
サリエンシマップは、入力特徴の相対的重要性の解釈可能な可視化を作成するための一般的なアプローチである。
そこで本稿では,DNNを入力雑音に頑健にするために開発した,勾配型サリエンシマップの多種多様な手法について検討する。
論文 参考訳(メタデータ) (2020-04-23T12:56:24Z) - Improving Robustness of Deep-Learning-Based Image Reconstruction [24.882806652224854]
逆問題解法では, 測定空間における敵の効果を分析し, 研究する必要がある。
本稿では,高機能な画像再構成ネットワークを構築するために,min-maxの定式化に使用される逆例を生成する補助ネットワークを提案する。
提案したmin-max学習方式を用いた線形ネットワークは,実際に同じ解に収束する。
論文 参考訳(メタデータ) (2020-02-26T22:12:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。