論文の概要: Measurement-Consistent Networks via a Deep Implicit Layer for Solving
Inverse Problems
- arxiv url: http://arxiv.org/abs/2211.03177v1
- Date: Sun, 6 Nov 2022 17:05:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 18:32:41.476160
- Title: Measurement-Consistent Networks via a Deep Implicit Layer for Solving
Inverse Problems
- Title(参考訳): 逆問題を解くための深部暗黙層による計測一貫性ネットワーク
- Authors: Rahul Mourya and Jo\~ao F. C. Mota
- Abstract要約: エンドツーエンドのディープニューラルネットワーク(DNN)は、逆問題を解決するための最先端のSOTA(State-of-the-art)になっている。
これらのネットワークは、トレーニングパイプラインの小さなバリエーションに敏感であり、小さなが重要な詳細を再構築することができないことが多い。
本稿では,逆問題に対して任意のDNNを計測一貫性に変換するフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: End-to-end deep neural networks (DNNs) have become state-of-the-art (SOTA)
for solving inverse problems. Despite their outstanding performance, during
deployment, such networks are sensitive to minor variations in the training
pipeline and often fail to reconstruct small but important details, a feature
critical in medical imaging, astronomy, or defence. Such instabilities in DNNs
can be explained by the fact that they ignore the forward measurement model
during deployment, and thus fail to enforce consistency between their output
and the input measurements. To overcome this, we propose a framework that
transforms any DNN for inverse problems into a measurement-consistent one. This
is done by appending to it an implicit layer (or deep equilibrium network)
designed to solve a model-based optimization problem. The implicit layer
consists of a shallow learnable network that can be integrated into the
end-to-end training. Experiments on single-image super-resolution show that the
proposed framework leads to significant improvements in reconstruction quality
and robustness over the SOTA DNNs.
- Abstract(参考訳): エンドツーエンドのディープニューラルネットワーク(DNN)は、逆問題を解決するための最先端(SOTA)になっている。
優れた性能にもかかわらず、配備中は、これらのネットワークは訓練パイプラインの小さなバリエーションに敏感であり、医療画像、天文学、防衛において重要な特徴である、小さなが重要な詳細を再構築することができないことが多い。
DNNのこのような不安定性は、デプロイ中に前方測定モデルを無視し、出力と入力測定の間の一貫性を強制できないという事実によって説明できる。
そこで本研究では,逆問題に対する任意のDNNを計測一貫性に変換するフレームワークを提案する。
これは、モデルに基づく最適化問題を解決するために設計された暗黙の層(あるいは深い平衡ネットワーク)を付加することで実現される。
暗黙のレイヤは浅い学習可能なネットワークで構成されており、エンドツーエンドのトレーニングに統合することができる。
単一画像超解像実験により,提案手法がSOTA DNNの再構成品質とロバスト性を大幅に向上させることが示された。
関連論文リスト
- Point-aware Interaction and CNN-induced Refinement Network for RGB-D
Salient Object Detection [95.84616822805664]
我々は,CNNによるトランスフォーマーアーキテクチャを導入し,ポイント・アウェア・インタラクションとCNNによるリファインメントを備えた新しいRGB-D SODネットワークを提案する。
トランスフォーマーがもたらすブロック効果とディテール破壊問題を自然に軽減するために,コンテンツリファインメントとサプリメントのためのCNNRユニットを設計する。
論文 参考訳(メタデータ) (2023-08-17T11:57:49Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems [0.0]
双曲型PDEを含む前方および逆問題に対する特徴情報ニューラルネットワーク(CINN)を提案する。
CINNは、通常のMSEデータ適合回帰損失をトレーニングした汎用ディープニューラルネットワークにおいて、PDEの特性を符号化する。
予備的な結果は、CINNがベースラインPINNの精度を改善しつつ、トレーニングの約2倍の速さで非物理的解を回避できることを示している。
論文 参考訳(メタデータ) (2022-12-28T18:38:53Z) - RDRN: Recursively Defined Residual Network for Image Super-Resolution [58.64907136562178]
深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像において顕著な性能を得た。
本稿では,注目ブロックを効率的に活用する新しいネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-11-17T11:06:29Z) - Deep network series for large-scale high-dynamic range imaging [2.3759432635713895]
本稿では,大規模高ダイナミックレンジイメージングのための新しい手法を提案する。
ディープニューラルネットワーク(DNN)で訓練されたエンドツーエンドは、ほぼ瞬時に線形逆イメージング問題を解くことができる。
代替のPlug-and-Playアプローチは、高ダイナミックレンジの課題に対処する上で有効であるが、高度に反復的なアルゴリズムに依存している。
論文 参考訳(メタデータ) (2022-10-28T11:13:41Z) - An Optimal Time Variable Learning Framework for Deep Neural Networks [0.0]
提案するフレームワークは、ResNet, DenseNet, Fractional-DNNなどの既存のネットワークに適用できる。
提案手法は、3D-マクスウェル方程式に悪影響を及ぼす。
論文 参考訳(メタデータ) (2022-04-18T19:29:03Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - Binary Neural Networks: A Survey [126.67799882857656]
バイナリニューラルネットワークは、リソース制限されたデバイスにディープモデルをデプロイするための有望なテクニックとして機能する。
バイナライゼーションは必然的に深刻な情報損失を引き起こし、さらに悪いことに、その不連続性はディープネットワークの最適化に困難をもたらす。
本稿では,2項化を直接実施するネイティブソリューションと,量子化誤差の最小化,ネットワーク損失関数の改善,勾配誤差の低減といった手法を用いて,これらのアルゴリズムを探索する。
論文 参考訳(メタデータ) (2020-03-31T16:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。