Leaking information to gain entanglement
- URL: http://arxiv.org/abs/2011.15116v1
- Date: Mon, 30 Nov 2020 18:49:45 GMT
- Title: Leaking information to gain entanglement
- Authors: Vikesh Siddhu
- Abstract summary: We find that engaging a system with its environment increases its ability to retain entanglement.
We counter-intuitively boost the quantum capacity of a channel by leaking almost all quantum information to the channel's environment.
- Score: 3.8073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement lies at the root of quantum theory. It is a remarkable resource
that is generally believed to diminish when entangled systems interact with
their environment. On the contrary, we find that engaging a system with its
environment increases its ability to retain entanglement. The maximum rate of
retaining entanglement is given by the quantum channel capacity. We
counter-intuitively boost the quantum capacity of a channel by leaking almost
all quantum information to the channel's environment. This boost exploits
two-letter level non-additivity in the channel's coherent information. The
resulting non-additivity has a far larger magnitude and a qualitatively wider
extent than previously known. Our findings have a surprising implication for
quantum key distribution: maximum rates for key distribution can be boosted by
allowing leakage of information to the eavesdropping environment.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Noise is resource-contextual in quantum communication [1.8749305679160366]
Estimating the information transmission capability of a quantum channel remains one of the fundamental problems in quantum information processing.
One of the most significant manifestations of this is the superadditivity of the channel capacity.
Our constructions demonstrate that noise is context dependent in quantum communication.
arXiv Detail & Related papers (2023-05-01T06:24:03Z) - Entanglement Distribution and Quantum Teleportation in Higher Dimension
over the Superposition of Causal Orders of Quantum Channels [13.359442837017202]
We develop and formulate the theoretical framework for transmission of classical information through entanglement distribution of qudits over two quantum channels.
Results show that entanglement distribution of a qudit provides a considerable gain in fidelity even with increase in noise.
arXiv Detail & Related papers (2023-03-19T15:06:24Z) - The superadditivity effects of quantum capacity decrease with the
dimension for qudit depolarizing channels [0.0]
We study how the gain in quantum capacity of qudit depolarizing channels relates to the dimension of the systems considered.
We conclude that when high dimensional qudits experiencing depolarizing noise are considered, the coherent information of the channel is not only an achievable rate but essentially the maximum possible rate for any quantum block code.
arXiv Detail & Related papers (2023-01-24T16:54:09Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Efficient algorithms for quantum information bottleneck [64.67104066707309]
We propose a new and general algorithm for the quantum generalisation of information bottleneck.
Our algorithm excels in the speed and the definiteness of convergence compared with prior results.
Notably, we discover that a quantum system can achieve strictly better performance than a classical system of the same size regarding quantum information bottleneck.
arXiv Detail & Related papers (2022-08-22T14:20:05Z) - Generic nonadditivity of quantum capacity in simple channels [12.4245398967236]
Super-additivity of quantum capacity occurs between two weakly additive channels each with large capacity on their own.
Our results show that super-additivity is much more prevalent than previously thought.
arXiv Detail & Related papers (2022-02-16T23:43:18Z) - Creating and destroying coherence with quantum channels [62.997667081978825]
We study optimal ways to create a large amount of quantum coherence via quantum channels.
correlations in multipartite systems do not enhance the ability of a quantum channel to create coherence.
We show that a channel can destroy more coherence when acting on a subsystem of a bipartite state.
arXiv Detail & Related papers (2021-05-25T16:44:13Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Entropic singularities give rise to quantum transmission [3.8073142980733]
Non-additivity allows quantum devices (aka quantum channels) to send more information than expected.
We prove a general theorem concerning positivity of a channel's coherent information.
A wide class of zero quantum capacity qubit channels can assist an incomplete erasure channel in sending quantum information.
arXiv Detail & Related papers (2020-03-23T16:32:50Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.