論文の概要: Natural Evolutionary Strategies for Variational Quantum Computation
- arxiv url: http://arxiv.org/abs/2012.00101v2
- Date: Mon, 29 Mar 2021 17:15:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 14:28:03.726892
- Title: Natural Evolutionary Strategies for Variational Quantum Computation
- Title(参考訳): 変分量子計算のための自然進化戦略
- Authors: Abhinav Anand, Matthias Degroote, and Al\'an Aspuru-Guzik
- Abstract要約: 自然進化戦略 (NES) は勾配のないブラックボックス最適化アルゴリズムの一群である。
本研究では、無作為化パラメトリゼーション量子回路(PQC)の減衰勾配領域における最適化への応用について述べる。
- 参考スコア(独自算出の注目度): 0.7874708385247353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural evolutionary strategies (NES) are a family of gradient-free black-box
optimization algorithms. This study illustrates their use for the optimization
of randomly-initialized parametrized quantum circuits (PQCs) in the region of
vanishing gradients. We show that using the NES gradient estimator the
exponential decrease in variance can be alleviated. We implement two specific
approaches, the exponential and separable natural evolutionary strategies, for
parameter optimization of PQCs and compare them against standard gradient
descent. We apply them to two different problems of ground state energy
estimation using variational quantum eigensolver (VQE) and state preparation
with circuits of varying depth and length. We also introduce batch optimization
for circuits with larger depth to extend the use of evolutionary strategies to
a larger number of parameters. We achieve accuracy comparable to
state-of-the-art optimization techniques in all the above cases with a lower
number of circuit evaluations. Our empirical results indicate that one can use
NES as a hybrid tool in tandem with other gradient-based methods for
optimization of deep quantum circuits in regions with vanishing gradients.
- Abstract(参考訳): 自然進化戦略 (NES) は勾配のないブラックボックス最適化アルゴリズムの一群である。
本研究は、無作為初期化パラメトリ化量子回路(pqcs)の消失勾配領域における最適化への応用を示す。
nes勾配推定器を用いて, 分散の指数的減少を緩和できることを示す。
pqcのパラメータ最適化のために指数的および分離可能な自然進化戦略を実装し、それらを標準勾配降下と比較する。
変分量子固有ソルバ(vqe)を用いた基底状態エネルギー推定と、深さと長さの異なる回路による状態形成の2つの異なる問題に適用する。
また、より深度の高い回路に対するバッチ最適化を導入し、より多くのパラメータへの進化戦略の利用を拡大する。
回路評価の少ない全てのケースにおいて、最先端の最適化手法に匹敵する精度を実現する。
実験結果から,nes を他の勾配に基づく手法と組み合わせたハイブリッドツールとして用いることができ,勾配が消失する領域における深い量子回路の最適化が可能となった。
関連論文リスト
- Optimizing a parameterized controlled gate with Free Quaternion Selection [0.4353365283165517]
本研究では,単一キュービットゲートのコストを局所的に最小化するための最適パラメータを推定するアルゴリズムを提案する。
性能をベンチマークするために,Isingや分子ハミルトニアンのための変分固有解法 (VQE) など,様々な最適化問題に提案手法を適用した。
論文 参考訳(メタデータ) (2024-09-20T14:46:00Z) - Line Search Strategy for Navigating through Barren Plateaus in Quantum Circuit Training [0.0]
変分量子アルゴリズムは、短期デバイスにおける量子優位性を示すための有望な候補と見なされている。
本研究では,回路トレーニングにおけるバレンプラトー問題(BP)の悪影響を軽減するために,新しい最適化手法を提案する。
我々は16ドルキュービットと15,000ドルのエンタングゲートからなる量子回路に最適化戦略を適用した。
論文 参考訳(メタデータ) (2024-02-07T20:06:29Z) - Parsimonious Optimisation of Parameters in Variational Quantum Circuits [1.303764728768944]
最適なパラメータを更新するために、1イテレーション毎に少なくとも2つの回路を実行する必要がある新しい量子勾配サンプリングを提案する。
提案手法は,古典的勾配降下に類似した収束率を達成し,勾配座標降下とSPSAを実証的に上回っている。
論文 参考訳(メタデータ) (2023-06-20T18:50:18Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Normalized Gradient Descent for Variational Quantum Algorithms [4.403985869332685]
VQA(Vari quantum algorithm)は、ノイズの多い量子コンピュータを利用する有望な手法である。
パラメータの更新に正規化勾配ベクトルを用いるNGD法は、いくつかの最適化問題においてうまく活用されている。
本稿では,通常のNGDよりも高速な収束を実現する新しいNGDを提案する。
論文 参考訳(メタデータ) (2021-06-21T11:03:12Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Channel-Directed Gradients for Optimization of Convolutional Neural
Networks [50.34913837546743]
本稿では,畳み込みニューラルネットワークの最適化手法を提案する。
出力チャネル方向に沿って勾配を定義することで性能が向上し,他の方向が有害となることを示す。
論文 参考訳(メタデータ) (2020-08-25T00:44:09Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。