論文の概要: Line Search Strategy for Navigating through Barren Plateaus in Quantum Circuit Training
- arxiv url: http://arxiv.org/abs/2402.05227v2
- Date: Mon, 9 Sep 2024 09:34:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 03:22:55.328396
- Title: Line Search Strategy for Navigating through Barren Plateaus in Quantum Circuit Training
- Title(参考訳): 量子回路訓練におけるバレン高原の経路探索戦略
- Authors: Jakab Nádori, Gregory Morse, Zita Majnay-Takács, Zoltán Zimborás, Péter Rakyta,
- Abstract要約: 変分量子アルゴリズムは、短期デバイスにおける量子優位性を示すための有望な候補と見なされている。
本研究では,回路トレーニングにおけるバレンプラトー問題(BP)の悪影響を軽減するために,新しい最適化手法を提案する。
我々は16ドルキュービットと15,000ドルのエンタングゲートからなる量子回路に最適化戦略を適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms are viewed as promising candidates for demonstrating quantum advantage on near-term devices. These approaches typically involve the training of parameterized quantum circuits through a classical optimization loop. However, they often encounter challenges attributed to the exponentially diminishing gradient components, known as the barren plateau (BP) problem. This work introduces a novel optimization method designed to alleviate the adverse effects of BPs during circuit training. Our approach to select the optimization search direction relies on the distant features of the cost-function landscape. This enables the optimization path to navigate around barren plateaus without the need for external control mechanisms. We have successfully applied our optimization strategy to quantum circuits comprising $16$ qubits and $15000$ entangling gates, demonstrating robust resistance against BPs. Additionally, we have extended our optimization strategy by incorporating an evolutionary selection framework, enhancing its ability to avoid local minima in the landscape. The modified algorithm has been successfully utilized in quantum gate synthesis applications, showcasing a significantly improved efficiency in generating highly compressed quantum circuits compared to traditional gradient-based optimization approaches.
- Abstract(参考訳): 変分量子アルゴリズムは、短期デバイスにおける量子優位性を示すための有望な候補と見なされている。
これらのアプローチは典型的には古典的な最適化ループを通してパラメータ化量子回路を訓練する。
しかし、それらはしばしば、バレンプラトー(BP)問題として知られる指数関数的に減少する勾配成分に起因する問題に遭遇する。
本研究は、回路トレーニング中のBPの悪影響を軽減するために設計された新しい最適化手法を提案する。
探索方向を最適化するためのアプローチは,コスト関数ランドスケープの遠隔的特徴に依存している。
これにより、外部制御機構を必要とせずに、バレン高原を移動する最適化パスが可能になる。
我々は16ドルキュービットと15,000ドルのエンタングゲートからなる量子回路に最適化戦略を適用し、BPに対する堅牢な抵抗を実証した。
さらに、進化的選択フレームワークを組み込むことで最適化戦略を拡張し、ランドスケープにおける局所最小化を回避する能力を高めた。
修正されたアルゴリズムは量子ゲート合成の応用に成功しており、従来の勾配に基づく最適化手法と比較して、高度に圧縮された量子回路を生成する効率が大幅に向上したことを示している。
関連論文リスト
- Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
ハードウェアレベルフレームワークとしてパルスベースの変動量子最適化(PBVQO)を導入する。
量子干渉デバイス上での外部超伝導の最適化について説明する。
PBVQOとメタラーニングの相乗効果は、従来のゲートベースの変分アルゴリズムよりも有利である。
論文 参考訳(メタデータ) (2024-07-17T15:05:36Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Cost Explosion for Efficient Reinforcement Learning Optimisation of
Quantum Circuits [55.616364225463066]
強化学習(Reinforcement Learning, RL)は、量子回路を最適化する学習手法である。
私たちのゴールは、量子回路を手動で最適化する方法のヒントを含めることで、エージェントの最適化戦略を改善することです。
本稿では, コスト爆発を許容することは, 最適回路に到達するなど, RL トレーニングにおいて大きな利点をもたらすことを示す。
論文 参考訳(メタデータ) (2023-11-21T10:16:03Z) - Optimizing Variational Quantum Algorithms with qBang: Efficiently Interweaving Metric and Momentum to Navigate Flat Energy Landscapes [0.0]
変分量子アルゴリズム(VQA)は、現在の量子コンピューティングインフラを利用するための有望なアプローチである。
本稿では,量子ブロイデン適応型自然勾配(qBang)アプローチを提案する。
論文 参考訳(メタデータ) (2023-04-27T00:06:48Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
変分量子古典ハイブリッドアルゴリズムは、近い将来に量子コンピュータの実用的な問題を解くための有望な戦略と見なされている。
本稿では,ベイズ空間における有望な領域を特定するために勾配を用いた高速・スローアルゴリズムを提案する。
本研究は, 量子化学, 最適化, 量子シミュレーション問題における変分量子アルゴリズムの応用に近づいたものである。
論文 参考訳(メタデータ) (2022-03-04T17:48:57Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。