論文の概要: Ultra-low bitrate video conferencing using deep image animation
- arxiv url: http://arxiv.org/abs/2012.00346v1
- Date: Tue, 1 Dec 2020 09:06:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-30 19:36:03.997008
- Title: Ultra-low bitrate video conferencing using deep image animation
- Title(参考訳): 深部画像アニメーションを用いた超低ビットレートビデオ会議
- Authors: Goluck Konuko, Giuseppe Valenzise, St\'ephane Lathuili\`ere
- Abstract要約: ビデオ会議のための超低速ビデオ圧縮のための新しい深層学習手法を提案する。
我々はディープニューラルネットワークを用いて、動き情報をキーポイント変位として符号化し、デコーダ側で映像信号を再構成する。
- 参考スコア(独自算出の注目度): 7.263312285502382
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work we propose a novel deep learning approach for ultra-low bitrate
video compression for video conferencing applications. To address the
shortcomings of current video compression paradigms when the available
bandwidth is extremely limited, we adopt a model-based approach that employs
deep neural networks to encode motion information as keypoint displacement and
reconstruct the video signal at the decoder side. The overall system is trained
in an end-to-end fashion minimizing a reconstruction error on the encoder
output. Objective and subjective quality evaluation experiments demonstrate
that the proposed approach provides an average bitrate reduction for the same
visual quality of more than 80% compared to HEVC.
- Abstract(参考訳): 本研究では,ビデオ会議用超低ビットレートビデオ圧縮のための新しい深層学習手法を提案する。
利用可能な帯域幅が極端に限られている場合の現在のビデオ圧縮パラダイムの欠点に対処するために、深層ニューラルネットワークを用いて、動き情報をキーポイント変位として符号化し、デコーダ側で映像信号を再構成するモデルベースのアプローチを採用する。
エンコーダ出力の再構成誤差を最小化するエンドツーエンド方式でシステム全体を訓練する。
客観的および主観的品質評価実験により,提案手法はHEVCと比較して80%以上の視覚的品質に対して平均ビットレート低減を提供することを示した。
関連論文リスト
- NU-Class Net: A Novel Approach for Video Quality Enhancement [1.7763979745248648]
本稿では,圧縮コーデックによる圧縮アーチファクトの軽減を目的とした,革新的な深層学習モデルであるNU-Class Netを紹介する。
NU-Class Netを利用することで、ビデオキャプチャノード内のビデオエンコーダは出力品質を低下させ、低ビットレートのビデオを生成することができる。
実験により,低ビットレートでストリーミングされたビデオの知覚品質を高めるためのモデルの有効性が確認された。
論文 参考訳(メタデータ) (2024-01-02T11:46:42Z) - High Fidelity Neural Audio Compression [92.4812002532009]
我々は、ニューラルネットワークを利用した最先端のリアルタイム、高忠実、オーディオを導入する。
ストリーミングエンコーダ-デコーダアーキテクチャと、エンドツーエンドでトレーニングされた量子化潜在空間で構成されている。
単一マルチスケール・スペクトログラム・アドバイザリーを用いて、トレーニングを簡素化し、高速化する。
論文 参考訳(メタデータ) (2022-10-24T17:52:02Z) - Gemino: Practical and Robust Neural Compression for Video Conferencing [19.137804113000474]
Geminoは、新しい高周波超解像パイプラインに基づくビデオ会議のための新しいニューラル圧縮システムである。
我々は,GeminoがTitan X GPU上でリアルタイムに動画を処理し,従来のビデオコーデックよりも2.2~5倍低画質で知覚品質を実現していることを示す。
論文 参考訳(メタデータ) (2022-09-21T17:10:46Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
オートエンコーダは教師なしニューラルネットワークの一種であり、様々なタスクを解くのに使用できる。
本稿では,ボトルネック表現における特徴冗長性を明示的に罰する手法を提案する。
我々は,3つの異なるデータセットを用いた次元削減,MNISTデータセットを用いた画像圧縮,ファッションMNISTを用いた画像デノナイズという,さまざまなタスクにまたがってアプローチを検証した。
論文 参考訳(メタデータ) (2022-02-09T18:48:02Z) - Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement [74.1052624663082]
圧縮ビデオの細部を復元する深層学習アーキテクチャを開発した。
これにより,従来の圧縮補正法と比較して復元精度が向上することを示す。
我々は、ビットストリームで容易に利用できる量子化データに対して、我々のモデルを条件付けする。
論文 参考訳(メタデータ) (2022-01-31T18:56:04Z) - Super-Resolving Compressed Video in Coding Chain [27.994055823226848]
レファレンスベースのDCNNと連携する混合解像度符号化フレームワークを提案する。
この新しい符号化チェーンにおいて、基準ベースDCNNは、低解像度(LR)圧縮ビデオからデコーダ側の高解像度(HR)クリーンバージョンへの直接マッピングを学習する。
論文 参考訳(メタデータ) (2021-03-26T03:39:54Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
本稿では,フレーム間の条件エントロピーをモデル化することのみに焦点を当てた,非常にシンプルで効率的なビデオ圧縮フレームワークを提案する。
まず、画像遅延符号間のエントロピーをモデル化する単純なアーキテクチャが、他のニューラルビデオ圧縮やビデオコーデックと同等の競争力を持つことを示す。
次に、このアーキテクチャの上に新しい内部学習拡張を提案し、復号速度を抑えることなく10%の節約を実現した。
論文 参考訳(メタデータ) (2020-08-20T20:01:59Z) - Feedback Recurrent Autoencoder for Video Compression [14.072596106425072]
低レイテンシモードで動作する学習ビデオ圧縮のための新しいネットワークアーキテクチャを提案する。
提案手法は,高分解能UVGデータセット上でのMS-SSIM/レート性能を示す。
論文 参考訳(メタデータ) (2020-04-09T02:58:07Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。