論文の概要: Super-Resolving Compressed Video in Coding Chain
- arxiv url: http://arxiv.org/abs/2103.14247v1
- Date: Fri, 26 Mar 2021 03:39:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 12:28:39.586855
- Title: Super-Resolving Compressed Video in Coding Chain
- Title(参考訳): コーディングチェーンにおける超解像圧縮ビデオ
- Authors: Dewang Hou, Yang Zhao, Yuyao Ye, Jiayu Yang, Jian Zhang, Ronggang Wang
- Abstract要約: レファレンスベースのDCNNと連携する混合解像度符号化フレームワークを提案する。
この新しい符号化チェーンにおいて、基準ベースDCNNは、低解像度(LR)圧縮ビデオからデコーダ側の高解像度(HR)クリーンバージョンへの直接マッピングを学習する。
- 参考スコア(独自算出の注目度): 27.994055823226848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scaling and lossy coding are widely used in video transmission and storage.
Previous methods for enhancing the resolution of such videos often ignore the
inherent interference between resolution loss and compression artifacts, which
compromises perceptual video quality. To address this problem, we present a
mixed-resolution coding framework, which cooperates with a reference-based
DCNN. In this novel coding chain, the reference-based DCNN learns the direct
mapping from low-resolution (LR) compressed video to their high-resolution (HR)
clean version at the decoder side. We further improve reconstruction quality by
devising an efficient deformable alignment module with receptive field block to
handle various motion distances and introducing a disentangled loss that helps
networks distinguish the artifact patterns from texture. Extensive experiments
demonstrate the effectiveness of proposed innovations by comparing with
state-of-the-art single image, video and reference-based restoration methods.
- Abstract(参考訳): スケーリングとロッキーコーディングはビデオ伝送やストレージで広く使われている。
このようなビデオの解像度を向上するための従来の手法は、解像度損失と圧縮アーティファクトの固有の干渉を無視し、知覚ビデオの品質を損なうことが多かった。
この問題に対処するために、参照ベースDCNNと協調する混合解像度符号化フレームワークを提案する。
この新しい符号化チェーンにおいて、基準ベースDCNNは、低解像度(LR)圧縮ビデオからデコーダ側の高解像度(HR)クリーンバージョンへの直接マッピングを学習する。
様々な動き距離を扱うための受容体ブロックを備えた効率的な変形可能なアライメントモジュールを考案し、ネットワークが人工物パターンとテクスチャを区別するのに役立つ異方性損失を導入することにより、復元品質をさらに向上させる。
広範にわたる実験により,最先端の単一画像,映像,参照ベース復元法との比較により,提案手法の有効性が実証された。
関連論文リスト
- Implicit Neural Representation for Videos Based on Residual Connection [0.0]
画像再構成に有効な残差接続として低解像度フレームを用いる手法を提案する。
実験の結果,本手法はPSNRの既存手法であるHNeRVを49本中46本で上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-15T10:10:48Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
本稿では,圧縮ビデオの品質向上の課題に焦点をあてる。
既存の手法のほとんどは、圧縮コーデック内での事前処理を最適に活用するための構造設計を欠いている。
新しいパラダイムは、より意識的な品質向上プロセスのために緊急に必要である。
論文 参考訳(メタデータ) (2024-05-10T09:18:17Z) - VCISR: Blind Single Image Super-Resolution with Video Compression
Synthetic Data [18.877077302923713]
本稿では,映像圧縮に基づく劣化モデルを用いて,ブラインドSISRタスクにおける低解像度画像データを合成する。
提案手法は既存の画像データセットに適用可能である。
SISR分解モデルにビデオ符号化アーティファクトを導入することで、ニューラルネットワークは、ビデオ圧縮劣化を復元する機能を備えた、画像の超解凍を可能にする。
論文 参考訳(メタデータ) (2023-11-02T05:24:19Z) - VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
コード化された表現をピクセルに復号することなく直接拡張・解析することがより効率的である。
再構成と直接拡張/分析の両方をサポートするために,コンパクト表現の学習を目標とする汎用型ニューラルビデオ符号化(VNVC)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T03:04:57Z) - Video Compression with Arbitrary Rescaling Network [8.489428003916622]
符号化前のビデオリサイズのためのレート誘導任意再スケーリングネットワーク(RARN)を提案する。
軽量RARN構造は、FHD(1080p)コンテンツをリアルタイム(91 FPS)で処理し、かなりのレート低下を得ることができる。
論文 参考訳(メタデータ) (2023-06-07T07:15:18Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
オートエンコーダは教師なしニューラルネットワークの一種であり、様々なタスクを解くのに使用できる。
本稿では,ボトルネック表現における特徴冗長性を明示的に罰する手法を提案する。
我々は,3つの異なるデータセットを用いた次元削減,MNISTデータセットを用いた画像圧縮,ファッションMNISTを用いた画像デノナイズという,さまざまなタスクにまたがってアプローチを検証した。
論文 参考訳(メタデータ) (2022-02-09T18:48:02Z) - Perceptually-inspired super-resolution of compressed videos [18.72040343193715]
空間分解能適応は、符号化効率を高めるためにしばしばビデオ圧縮に使用される技法である。
近年の研究では、畳み込みニューラルネットワーク(CNN)に基づく高度な超解像法を用いて、再構築品質をさらに向上させている。
本稿では,CNNモデルを用いた圧縮映像の空間的アップサンプリングのために,知覚にインスパイアされた超解像法(M-SRGAN)を提案する。
論文 参考訳(メタデータ) (2021-06-15T13:50:24Z) - Ultra-low bitrate video conferencing using deep image animation [7.263312285502382]
ビデオ会議のための超低速ビデオ圧縮のための新しい深層学習手法を提案する。
我々はディープニューラルネットワークを用いて、動き情報をキーポイント変位として符号化し、デコーダ側で映像信号を再構成する。
論文 参考訳(メタデータ) (2020-12-01T09:06:34Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
ロスシー画像圧縮は、デジタル画像の最もよく使われる演算子の1つである。
Invertible Lossy Compression (ILC) と呼ばれる新しい非可逆的フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-22T04:04:56Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。