論文の概要: Unsupervised Anomaly Detection From Semantic Similarity Scores
- arxiv url: http://arxiv.org/abs/2012.00461v3
- Date: Fri, 26 Mar 2021 08:40:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-30 20:07:11.405988
- Title: Unsupervised Anomaly Detection From Semantic Similarity Scores
- Title(参考訳): 意味的類似度スコアからの教師なし異常検出
- Authors: Nima Rafiee, Rahil Gholamipoor, Markus Kollmann
- Abstract要約: 本稿では,意味的類似度スコアを用いて異常検出を行う,シンプルで汎用的なフレームワークSemSADを提案する。
視覚領域における異常、新規性、アウト・オブ・ディストリビューション検出に対する従来のアプローチを大きなマージンで上回ることができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifying samples as in-distribution or out-of-distribution (OOD) is a
challenging problem of anomaly detection and a strong test of the
generalisation power for models of the in-distribution. In this paper, we
present a simple and generic framework, {\it SemSAD}, that makes use of a
semantic similarity score to carry out anomaly detection. The idea is to first
find for any test example the semantically closest examples in the training
set, where the semantic relation between examples is quantified by the cosine
similarity between feature vectors that leave semantics unchanged under
transformations, such as geometric transformations (images), time shifts (audio
signals), and synonymous word substitutions (text). A trained discriminator is
then used to classify a test example as OOD if the semantic similarity to its
nearest neighbours is significantly lower than the corresponding similarity for
test examples from the in-distribution. We are able to outperform previous
approaches for anomaly, novelty, or out-of-distribution detection in the visual
domain by a large margin. In particular, we obtain AUROC values close to one
for the challenging task of detecting examples from CIFAR-10 as
out-of-distribution given CIFAR-100 as in-distribution, without making use of
label information.
- Abstract(参考訳): サンプルを分布内または分布外(OOD)として分類することは異常検出の難しい問題であり、分布内モデルに対する一般化力の強い試験である。
本稿では, 意味的類似度スコアを用いて異常検出を行う, 単純で汎用的なフレームワーク, {\it SemSAD}を提案する。
サンプル間の意味関係は、幾何学的変換(画像)、時間シフト(オーディオ信号)、同義語置換(テキスト)といった変換の下で意味を不変にしておく特徴ベクトル間のコサイン類似性によって定量化される。
次に、訓練された判別器を用いてテスト例をOODとして分類する。最も近い隣人のセマンティックな類似性が、インディストリビューションからのテスト例の対応する類似性よりも大幅に低い場合。
視覚領域における異常,新規性,分布外検出に対する従来のアプローチを,大きなマージンで上回ることができるのです。
特に, CIFAR-10 から CIFAR-100 を非流通として検出する上で, ラベル情報を活用することなく, AUROC に近接する値を求める。
関連論文リスト
- Enhancing Anomaly Detection Generalization through Knowledge Exposure: The Dual Effects of Augmentation [9.740752855568202]
異常検出では、標準から逸脱し、頻繁に発生するデータセット内のインスタンスを識別する。
現在のベンチマークでは、実際のシナリオと一致しない通常のデータの多様性の低い方法を好む傾向にある。
本稿では,概念力学の理解に外部知識を統合した新しいテストプロトコルと知識公開(KE)手法を提案する。
論文 参考訳(メタデータ) (2024-06-15T12:37:36Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
異常検出(AD、Anomaly Detection)は、異常なサンプルを識別する機械学習タスクである。
分散シフトの制約の下では、トレーニングサンプルとテストサンプルが同じ分布から引き出されるという仮定が崩壊する。
我々は,異常検出モデルのレジリエンスを,異なる種類の分布シフトに高めようとしている。
論文 参考訳(メタデータ) (2023-12-21T23:20:47Z) - Likelihood-Aware Semantic Alignment for Full-Spectrum
Out-of-Distribution Detection [24.145060992747077]
画像とテキストの対応を意味的に高次領域に促進する「Likelihood-Aware Semantic Alignment (LSA)フレームワーク」を提案する。
2つのF-OODベンチマークで15.26%$と18.88%$の差で既存の手法を上回り、提案したLSAの優れたOOD検出性能を実証した。
論文 参考訳(メタデータ) (2023-12-04T08:53:59Z) - Predicting Out-of-Domain Generalization with Neighborhood Invariance [59.05399533508682]
局所変換近傍における分類器の出力不変性の尺度を提案する。
私たちの測度は計算が簡単で、テストポイントの真のラベルに依存しません。
画像分類,感情分析,自然言語推論のベンチマーク実験において,我々の測定値と実際のOOD一般化との間に強い相関関係を示す。
論文 参考訳(メタデータ) (2022-07-05T14:55:16Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - UQGAN: A Unified Model for Uncertainty Quantification of Deep
Classifiers trained via Conditional GANs [9.496524884855559]
本稿では,GAN(Generative Adversarial Network)に基づく画像分類におけるディープニューラルネットワークの不確実性の定量化手法を提案する。
GAN の生成した OoD の例で分散データの全体を保護する代わりに,条件付き GAN によって生成されたクラスを別々に保護する。
特に、最先端のGAN学習に基づく分類器のOoD検出とFP検出性能を改善した。
論文 参考訳(メタデータ) (2022-01-31T14:42:35Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
本稿では,ランダムな成分が予測器の滑らかさを向上できるという観測によって動機づけられた敵の例を検出するための新しい枠組みを提案する。
本稿では,BATer を略した新しいベイズ対向型サンプル検出器を提案し,対向型サンプル検出の性能を向上させる。
論文 参考訳(メタデータ) (2021-05-18T15:51:24Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
我々は,試行錯誤の予測に例ベースの説明を与えることのできる,プロトタイプベースの学生ネットワークのより広範な採用を論じる。
類似カーネル以外のプロトタイプベースのネットワークは,分類精度を損なうことなく,有意義な説明と有望な外乱検出結果が得られることを示す。
論文 参考訳(メタデータ) (2020-11-11T05:58:17Z) - Learning explanations that are hard to vary [75.30552491694066]
例を越えた平均化は、異なる戦略を縫合する記憶とパッチワークのソリューションに有利であることを示す。
そこで我々は論理ANDに基づく単純な代替アルゴリズムを提案し,実験的に検証する。
論文 参考訳(メタデータ) (2020-09-01T10:17:48Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。