論文の概要: ClimaText: A Dataset for Climate Change Topic Detection
- arxiv url: http://arxiv.org/abs/2012.00483v2
- Date: Sat, 2 Jan 2021 16:13:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-30 20:10:17.648986
- Title: ClimaText: A Dataset for Climate Change Topic Detection
- Title(参考訳): climatext: 気候変動のトピック検出のためのデータセット
- Authors: Francesco S. Varini and Jordan Boyd-Graber and Massimiliano Ciaramita
and Markus Leippold
- Abstract要約: 文に基づく気候変動トピック検出のためのデータセットであるtextscClimaTextを紹介した。
一般的なキーワードベースのモデルは、そのような複雑で進化するタスクには不十分であることがわかった。
我々の分析は、いくつかの面で改善する大きな可能性を明らかにしている。
- 参考スコア(独自算出の注目度): 2.9767565026354186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Climate change communication in the mass media and other textual sources may
affect and shape public perception. Extracting climate change information from
these sources is an important task, e.g., for filtering content and
e-discovery, sentiment analysis, automatic summarization, question-answering,
and fact-checking. However, automating this process is a challenge, as climate
change is a complex, fast-moving, and often ambiguous topic with scarce
resources for popular text-based AI tasks. In this paper, we introduce
\textsc{ClimaText}, a dataset for sentence-based climate change topic
detection, which we make publicly available. We explore different approaches to
identify the climate change topic in various text sources. We find that popular
keyword-based models are not adequate for such a complex and evolving task.
Context-based algorithms like BERT \cite{devlin2018bert} can detect, in
addition to many trivial cases, a variety of complex and implicit topic
patterns. Nevertheless, our analysis reveals a great potential for improvement
in several directions, such as, e.g., capturing the discussion on indirect
effects of climate change. Hence, we hope this work can serve as a good
starting point for further research on this topic.
- Abstract(参考訳): マスメディアや他のテキストソースにおける気候変動のコミュニケーションは、大衆の認識に影響を与え、形作る可能性がある。
これらのソースから気候変動情報を抽出することは、コンテンツのフィルタリングやe発見、感情分析、自動要約、質問応答、事実チェックといった重要なタスクである。
しかし、気候変動は複雑で、素早く動き、しばしば曖昧なトピックであり、人気のあるテキストベースのAIタスクのためのリソースが不足しているため、このプロセスを自動化することは難しい。
本稿では,文に基づく気候変動トピック検出のためのデータセットである \textsc{ClimaText} を紹介する。
さまざまなテキストソースで気候変動のトピックを特定するためのさまざまなアプローチを探索する。
一般的なキーワードベースのモデルは、そのような複雑で進化するタスクには不十分である。
BERT \cite{devlin2018bert}のようなコンテキストベースのアルゴリズムは、多くの自明なケースに加えて、さまざまな複雑で暗黙的なトピックパターンを検出することができる。
それにもかかわらず、気候変動の間接的影響に関する議論を捉えるなど、いくつかの方向に改善する大きな可能性を分析によって明らかにしています。
したがって、この研究が、このトピックに関するさらなる研究の出発点となることを願っている。
関連論文リスト
- Show Me What and Where has Changed? Question Answering and Grounding for Remote Sensing Change Detection [82.65760006883248]
我々は,CDQAG (Change Detection Question Answering and Grounding) という新しいタスクを導入する。
CDQAGは、解釈可能なテキスト回答と直感的な視覚的証拠を提供することで、従来の変更検出タスクを拡張している。
QAG-360Kと呼ばれる最初のCDQAGベンチマークデータセットを構築し、360K以上の質問、テキスト回答、およびそれに対応する高品質な視覚マスクを含む。
論文 参考訳(メタデータ) (2024-10-31T11:20:13Z) - Indexing and Visualization of Climate Change Narratives Using BERT and Causal Extraction [2.7325857919669327]
本稿では,2つの自然言語処理手法であるBERT(Bidirectional Representations from Transformers)と因果抽出を用いて,気候変動に関する新聞記事の分析を行う。
方法論の斬新さは、新聞の著者が仮定する因果関係を抽出し、定量化することができた。
論文 参考訳(メタデータ) (2024-08-03T11:05:41Z) - Analyzing Regional Impacts of Climate Change using Natural Language
Processing Techniques [0.9387233631570752]
我々は、気候学における特定の地理を特定するために、名前付きエンティティ認識(NER)にBERT(Bidirectional Representations from Transformers)を用いる。
地域ごとの気候傾向分析を行い、特定の地域での気候変動に関連する主要なテーマや関心点を特定する。
これらの地域固有の気候データの詳細な調査は、よりカスタマイズされた政策作成、適応、緩和戦略の作成を可能にする。
論文 参考訳(メタデータ) (2024-01-11T16:44:59Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - ClimateNLP: Analyzing Public Sentiment Towards Climate Change Using
Natural Language Processing [0.0]
本稿では、自然言語処理(NLP)技術を用いて、気候変動に関する話題を分析し、気候変動に関連するツイートの感情を定量化する。
目的は、個人が表現する感情を識別し、気候変動に関する世論のパターンを明らかにすることである。
論文 参考訳(メタデータ) (2023-10-12T07:48:50Z) - Climate Change & Computer Audition: A Call to Action and Overview on
Audio Intelligence to Help Save the Planet [98.97255654573662]
この研究は、オーディオインテリジェンスが気候に関わる課題を克服するために貢献できる領域の概要を提供する。
我々は、地球、水、空気、火、エーテルの5つの要素に従って、潜在的なコンピュータオーディションの応用を分類する。
論文 参考訳(メタデータ) (2022-03-10T13:32:31Z) - Trend and Thoughts: Understanding Climate Change Concern using Machine
Learning and Social Media Data [3.7384509727711923]
われわれは大規模な気候変動のTwitterデータセットを構築し、機械学習を用いて包括的な分析を行った。
トピックモデリングと自然言語処理を行うことで、気候変動に関するツイート数と主要な気候イベントの関係を示す。
我々のデータセットはKaggleで公開されており、さらなる研究に利用できる。
論文 参考訳(メタデータ) (2021-11-06T19:59:03Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
近年、企業は環境への影響を緩和し、気候変動の状況に適応することを目指している。
これは、環境・社会・ガバナンス(ESG)の傘下にある様々な種類の気候リスクと暴露を網羅する、ますます徹底した報告を通じて報告されている。
本稿では,本稿で開発したツールと方法論について紹介する。
論文 参考訳(メタデータ) (2020-11-03T21:22:42Z) - From Talk to Action with Accountability: Monitoring the Public
Discussion of Policy Makers with Deep Neural Networks and Topic Modelling [0.0]
マルチソーストピックアグリゲーションシステム (MuSTAS) を提案する。
MuSTASは、いくつかの公開ソースからのポリシー作成者によるスピーチとレトリックを、容易に消化可能なトピックの要約に処理する。
この話題の消化は、政治家が気候変動と気候政策についてどこに、どのように、いつ話すかを評価するのに、一般市民や市民社会に役立ちます。
論文 参考訳(メタデータ) (2020-10-16T12:21:01Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z) - Detecting and Classifying Malevolent Dialogue Responses: Taxonomy, Data
and Methodology [68.8836704199096]
コーパスベースの会話インタフェースは、テンプレートベースのエージェントや検索ベースのエージェントよりも多様な自然なレスポンスを生成することができる。
コーパスベースの会話エージェントの生成能力が増大すると、マレヴォレントな反応を分類し、フィルタリングする必要性が生じる。
不適切な内容の認識と分類に関するこれまでの研究は、主にある種のマレヴォレンスに焦点を絞っている。
論文 参考訳(メタデータ) (2020-08-21T22:43:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。