論文の概要: Detecting and Classifying Malevolent Dialogue Responses: Taxonomy, Data
and Methodology
- arxiv url: http://arxiv.org/abs/2008.09706v1
- Date: Fri, 21 Aug 2020 22:43:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 22:04:30.068974
- Title: Detecting and Classifying Malevolent Dialogue Responses: Taxonomy, Data
and Methodology
- Title(参考訳): マレヴォレントな対話応答の検出と分類:分類学、データ、方法論
- Authors: Yangjun Zhang, Pengjie Ren, Maarten de Rijke
- Abstract要約: コーパスベースの会話インタフェースは、テンプレートベースのエージェントや検索ベースのエージェントよりも多様な自然なレスポンスを生成することができる。
コーパスベースの会話エージェントの生成能力が増大すると、マレヴォレントな反応を分類し、フィルタリングする必要性が生じる。
不適切な内容の認識と分類に関するこれまでの研究は、主にある種のマレヴォレンスに焦点を絞っている。
- 参考スコア(独自算出の注目度): 68.8836704199096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational interfaces are increasingly popular as a way of connecting
people to information. Corpus-based conversational interfaces are able to
generate more diverse and natural responses than template-based or
retrieval-based agents. With their increased generative capacity of corpusbased
conversational agents comes the need to classify and filter out malevolent
responses that are inappropriate in terms of content and dialogue acts.
Previous studies on the topic of recognizing and classifying inappropriate
content are mostly focused on a certain category of malevolence or on single
sentences instead of an entire dialogue. In this paper, we define the task of
Malevolent Dialogue Response Detection and Classification (MDRDC). We make
three contributions to advance research on this task. First, we present a
Hierarchical Malevolent Dialogue Taxonomy (HMDT). Second, we create a labelled
multi-turn dialogue dataset and formulate the MDRDC task as a hierarchical
classification task over this taxonomy. Third, we apply stateof-the-art text
classification methods to the MDRDC task and report on extensive experiments
aimed at assessing the performance of these approaches.
- Abstract(参考訳): 会話インターフェースは、人々を情報に結びつける手段として、ますます人気が高まっている。
コーパスベースの会話インターフェイスは、テンプレートベースまたは検索ベースのエージェントよりも多様で自然な応答を生成することができる。
コーパスベースの会話エージェントの生成能力が増大すると、コンテンツや対話行動の点で不適切である不適切な応答を分類し、フィルタリングする必要性が生じる。
不適切なコンテンツの認識と分類に関する以前の研究は、主に対話全体ではなく、特定のカテゴリーのマレヴォランスや単文に焦点が当てられている。
本稿では,Malevolent Dialogue Response Detection and Classification (MDRDC)の課題を定義する。
我々はこの課題の先行研究に3つの貢献をしている。
まず,階層型Malevolent Dialogue Taxonomy(HMDT)を提案する。
次に,ラベル付きマルチターン対話データセットを作成し,mdrdcタスクを分類上の階層的分類タスクとして定式化する。
第3に,mdrdcタスクに最先端テキスト分類手法を適用し,これらの手法の性能評価を目的とした広範な実験報告を行う。
関連論文リスト
- Interactive Text-to-Image Retrieval with Large Language Models: A Plug-and-Play Approach [33.231639257323536]
本稿では,対話型テキスト・画像検索タスクにおける対話型コンテキストクエリの問題に対処する。
対話形式のコンテキストを再構成することにより、既存の視覚的対話データから検索モデルを微調整する必要がなくなる。
対象画像の属性に関する非冗長な質問を生成するために,LLM質問機を構築した。
論文 参考訳(メタデータ) (2024-06-05T16:09:01Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
本稿では,対話型検索モデルを効率的に初期化するための3つの自己教師型タスクを備えた学習後パラダイムであるフルモデル(モデル)を提案する。
提案手法の有効性を検証するために,CAsT-19 と CAsT-20 の2つのベンチマークデータセットを用いて,会話検索タスクにモデルにより訓練後の会話エンコーダを適用した。
論文 参考訳(メタデータ) (2023-07-02T13:36:36Z) - SuperDialseg: A Large-scale Dataset for Supervised Dialogue Segmentation [55.82577086422923]
文書地上対話の助けを借りて,対話のセグメンテーションポイントを実現可能な定義を提供する。
我々は,9,478の対話を含むSuperDialsegと呼ばれる大規模教師付きデータセットをリリースする。
また、対話セグメンテーションタスクの5つのカテゴリにまたがる18のモデルを含むベンチマークも提供する。
論文 参考訳(メタデータ) (2023-05-15T06:08:01Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
複数のチャネルからコンテキスト情報を統合できるフレキシブルなニューラルネットワークフレームワークを提案する。
会話応答ランキングタスクの評価に広く用いられているMSDialogデータセット上で,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-03-31T23:58:28Z) - PK-ICR: Persona-Knowledge Interactive Context Retrieval for Grounded Dialogue [21.266410719325208]
ペルソナとナレッジ デュアルコンテキスト識別(ペルソナとナレッジ コンテクストの同定)は、与えられた対話において、ペルソナとナレッジを共同で識別するタスクである。
我々は,対話のすべての文脈を同時に活用する新しい接地検索手法を開発した。
論文 参考訳(メタデータ) (2023-02-13T20:27:26Z) - Unsupervised Summarization for Chat Logs with Topic-Oriented Ranking and
Context-Aware Auto-Encoders [59.038157066874255]
本稿では,手動ラベル付きデータを用いずにチャット要約を行うrankaeという新しいフレームワークを提案する。
RankAEは、中心性と多様性に応じてトピックの発話を同時に選択するトピック指向のランキング戦略で構成されています。
消音自動エンコーダは、選択された発話に基づいて簡潔でコンテキスト情報に基づいた要約を生成するように設計されています。
論文 参考訳(メタデータ) (2020-12-14T07:31:17Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
テキスト要約は、NLPにおいて最も困難で興味深い問題の1つである。
本研究では、まず、異なる視点から構造化されていない日々のチャットの会話構造を抽出し、会話を表現するマルチビューシーケンス・ツー・シーケンスモデルを提案する。
大規模対話要約コーパスの実験により,本手法は,自動評価と人的判断の両面から,従来の最先端モデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-04T20:12:44Z) - Contextual Dialogue Act Classification for Open-Domain Conversational
Agents [10.576497782941697]
会話におけるユーザ発話の一般的な意図を分類することは、会話エージェントのための自然言語理解(NLU)の重要なステップである。
本稿では,文脈対話行為分類のための簡易かつ効果的な深層学習手法であるCDAC(Contextual Dialogue Act)を提案する。
我々は、人-機械対話における対話行動を予測するために、トランスファーラーニングを用いて人間-機械対話で訓練されたモデルを適用する。
論文 参考訳(メタデータ) (2020-05-28T06:48:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。