Deep Gravity: enhancing mobility flows generation with deep neural
networks and geographic information
- URL: http://arxiv.org/abs/2012.00489v2
- Date: Wed, 30 Dec 2020 19:42:54 GMT
- Title: Deep Gravity: enhancing mobility flows generation with deep neural
networks and geographic information
- Authors: Filippo Simini, Gianni Barlacchi, Massimiliano Luca, Luca Pappalardo
- Abstract summary: Existing solutions to flow generation are mainly based on mechanistic approaches.
We propose the MultiFeature Deep Gravity model as an effective solution to flow generation.
Our experiments, conducted on commuting flows in England, show that the MFDG model achieves a significant increase in the performance.
- Score: 1.479639149658596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The movements of individuals within and among cities influence key aspects of
our society, such as the objective and subjective well-being, the diffusion of
innovations, the spreading of epidemics, and the quality of the environment.
For this reason, there is increasing interest around the challenging problem of
flow generation, which consists in generating the flows between a set of
geographic locations, given the characteristics of the locations and without
any information about the real flows. Existing solutions to flow generation are
mainly based on mechanistic approaches, such as the gravity model and the
radiation model, which suffer from underfitting and overdispersion, neglect
important variables such as land use and the transportation network, and cannot
describe non-linear relationships between these variables. In this paper, we
propose the Multi-Feature Deep Gravity (MFDG) model as an effective solution to
flow generation. On the one hand, the MFDG model exploits a large number of
variables (e.g., characteristics of land use and the road network; transport,
food, and health facilities) extracted from voluntary geographic information
data (OpenStreetMap). On the other hand, our model exploits deep neural
networks to describe complex non-linear relationships between those variables.
Our experiments, conducted on commuting flows in England, show that the MFDG
model achieves a significant increase in the performance (up to 250\% for
highly populated areas) than mechanistic models that do not use deep neural
networks, or that do not exploit geographic voluntary data. Our work presents a
precise definition of the flow generation problem, which is a novel task for
the deep learning community working with spatio-temporal data, and proposes a
deep neural network model that significantly outperforms current
state-of-the-art statistical models.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - Amortized Network Intervention to Steer the Excitatory Point Processes [8.15558505134853]
Excitatory point processes (i.e., event flows) occurring over dynamic graphs provide a fine-grained model to capture how discrete events may spread over time and space.
How to effectively steer the event flows by modifying the dynamic graph structures presents an interesting problem, motivated by curbing the spread of infectious diseases.
We design an Amortized Network Interventions framework, allowing for the pooling of optimal policies from history and other contexts.
arXiv Detail & Related papers (2023-10-06T11:17:28Z) - FairMobi-Net: A Fairness-aware Deep Learning Model for Urban Mobility
Flow Generation [2.30238915794052]
We present a novel, fairness-aware deep learning model, FairMobi-Net, for inter-region human flow prediction.
We validate the model using comprehensive human mobility datasets from four U.S. cities, predicting human flow at the census-tract level.
The model maintains a high degree of accuracy consistently across diverse regions, addressing the previous fairness concern.
arXiv Detail & Related papers (2023-07-20T19:56:30Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Automated Spatio-Temporal Graph Contrastive Learning [18.245433428868775]
We develop an automated-temporal augmentation scheme with a parameterized contrastive view generator.
AutoST can adapt to the heterogeneous graph with multi-view semantics well preserved.
Experiments for three downstream-temporal mining tasks on several real-world datasets demonstrate the significant performance gain.
arXiv Detail & Related papers (2023-05-06T03:52:33Z) - Temporal Domain Generalization with Drift-Aware Dynamic Neural Network [12.483886657900525]
We propose a Temporal Domain Generalization with Drift-Aware Dynamic Neural Network (DRAIN) framework.
Specifically, we formulate the problem into a Bayesian framework that jointly models the relation between data and model dynamics.
It captures the temporal drift of model parameters and data distributions and can predict models in the future without the presence of future data.
arXiv Detail & Related papers (2022-05-21T20:01:31Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Learning Geo-Contextual Embeddings for Commuting Flow Prediction [20.600183945696863]
Predicting commuting flows based on infrastructure and land-use information is critical for urban planning and public policy development.
Conventional models, such as gravity model, are mainly derived from physics principles and limited by their predictive power in real-world scenarios.
We propose Geo-contextual Multitask Embedding Learner (GMEL), a model that captures the spatial correlations from geographic contextual information for commuting flow prediction.
arXiv Detail & Related papers (2020-05-04T17:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.