論文の概要: Decomposition, Compression, and Synthesis (DCS)-based Video Coding: A
Neural Exploration via Resolution-Adaptive Learning
- arxiv url: http://arxiv.org/abs/2012.00650v5
- Date: Mon, 15 Jan 2024 13:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 04:17:22.887341
- Title: Decomposition, Compression, and Synthesis (DCS)-based Video Coding: A
Neural Exploration via Resolution-Adaptive Learning
- Title(参考訳): 分解・圧縮・合成(DCS)に基づくビデオ符号化:分解能適応学習によるニューラル探索
- Authors: Ming Lu, Tong Chen, Dandan Ding, Fengqing Zhu, and Zhan Ma
- Abstract要約: 入力映像をそれぞれの空間テクスチャフレーム(STF)に分解する。
次に,一般的なビデオコーダを用いて圧縮する。
最後に,デコードされたSTFとTMFをネイティブ入力と同じ解像度で合成し,高品質なビデオ再構成を実現する。
- 参考スコア(独自算出の注目度): 30.54722074562783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by the facts that retinal cells actually segregate the visual scene
into different attributes (e.g., spatial details, temporal motion) for
respective neuronal processing, we propose to first decompose the input video
into respective spatial texture frames (STF) at its native spatial resolution
that preserve the rich spatial details, and the other temporal motion frames
(TMF) at a lower spatial resolution that retain the motion smoothness; then
compress them together using any popular video coder; and finally synthesize
decoded STFs and TMFs for high-fidelity video reconstruction at the same
resolution as its native input. This work simply applies the bicubic resampling
in decomposition and HEVC compliant codec in compression, and puts the focus on
the synthesis part. For resolution-adaptive synthesis, a motion compensation
network (MCN) is devised on TMFs to efficiently align and aggregate temporal
motion features that will be jointly processed with corresponding STFs using a
non-local texture transfer network (NL-TTN) to better augment spatial details,
by which the compression and resolution resampling noises can be effectively
alleviated with better rate-distortion efficiency. Such "Decomposition,
Compression, Synthesis (DCS)" based scheme is codec agnostic, currently
exemplifying averaged $\approx$1 dB PSNR gain or $\approx$25% BD-rate saving,
against the HEVC anchor using reference software. In addition, experimental
comparisons to the state-of-the-art methods and ablation studies are conducted
to further report the efficiency and generalization of DCS algorithm, promising
an encouraging direction for future video coding.
- Abstract(参考訳): Inspired by the facts that retinal cells actually segregate the visual scene into different attributes (e.g., spatial details, temporal motion) for respective neuronal processing, we propose to first decompose the input video into respective spatial texture frames (STF) at its native spatial resolution that preserve the rich spatial details, and the other temporal motion frames (TMF) at a lower spatial resolution that retain the motion smoothness; then compress them together using any popular video coder; and finally synthesize decoded STFs and TMFs for high-fidelity video reconstruction at the same resolution as its native input.
この研究は、分解におけるバイコビック再サンプリングと圧縮におけるHEVC準拠コーデックを単純に適用し、合成部に焦点をあてる。
非局所テクスチャ転送ネットワーク(NL-TTN)を用いて、対応するSTFと協調して処理される時間的運動特徴を効率よく整合・集約し、空間的詳細を向上するために、TMF上に動き補償ネットワーク(MCN)を考案し、圧縮と分解のリサンプリングを効率良く行うことができる。
このような「分解、圧縮、合成(DCS)」ベースのスキームはコーデック非依存であり、参照ソフトウェアを使用したHEVCアンカーに対して、現在平均$\approx$1 dB PSNRゲインまたは$\approx$25% BD-rateセーブを例示している。
さらに,DCSアルゴリズムの効率と一般化を更に報告するために,最先端の手法とアブレーション研究との実験的比較を行い,将来的なビデオ符号化の方向性を期待する。
関連論文リスト
- High-Efficiency Neural Video Compression via Hierarchical Predictive Learning [27.41398149573729]
強化されたDeep Hierarchical Video Compression(DHVC 2.0)は、優れた圧縮性能と目覚ましい複雑さの効率を導入する。
階層的な予測符号化を使用して、各ビデオフレームをマルチスケール表現に変換する。
トランスミッションフレンドリーなプログレッシブデコーディングをサポートしており、パケットロスの存在下では特にネットワーク化されたビデオアプリケーションに有利である。
論文 参考訳(メタデータ) (2024-10-03T15:40:58Z) - Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution [151.1255837803585]
ビデオ超解像のための空間適応と時間コヒーレンス(SATeCo)を追求する新しい手法を提案する。
SATeCoは低解像度ビデオから時空間ガイダンスを学習し、潜時空間高解像度ビデオデノイングとピクセル空間ビデオ再構成の両方を校正する。
REDS4データセットとVid4データセットを用いて行った実験は、我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T17:59:26Z) - IBVC: Interpolation-driven B-frame Video Compression [68.18440522300536]
Bフレームビデオ圧縮は、双方向動作推定と動き補償(MEMC)符号化をミドルフレーム再構成に適用することを目的としている。
従来の学習アプローチでは、しばしば双方向の光フロー推定に依存するニューラルネットワークのPフレームコーデックをBフレームに直接拡張する。
これらの問題に対処するために,IBVC (Interpolation-B-frame Video Compression) という単純な構造を提案する。
論文 参考訳(メタデータ) (2023-09-25T02:45:51Z) - Differentiable Resolution Compression and Alignment for Efficient Video
Classification and Retrieval [16.497758750494537]
本稿では,高解像度圧縮・アライメント機構を備えた効率的な映像表現ネットワークを提案する。
我々は、相性および非相性フレーム特徴を符号化するために、微分可能なコンテキスト対応圧縮モジュールを利用する。
我々は,異なる解像度のフレーム特徴間のグローバル時間相関を捉えるために,新しい解像度変換器層を導入する。
論文 参考訳(メタデータ) (2023-09-15T05:31:53Z) - VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
コード化された表現をピクセルに復号することなく直接拡張・解析することがより効率的である。
再構成と直接拡張/分析の両方をサポートするために,コンパクト表現の学習を目標とする汎用型ニューラルビデオ符号化(VNVC)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T03:04:57Z) - You Can Ground Earlier than See: An Effective and Efficient Pipeline for
Temporal Sentence Grounding in Compressed Videos [56.676761067861236]
ビデオがトリミングされていない場合、時間的文のグラウンド化は、文問合せに従って目的のモーメントを意味的に見つけることを目的としている。
それまでの優れた作品は、かなり成功したが、それらはデコードされたフレームから抽出されたハイレベルな視覚的特徴にのみ焦点を当てている。
本稿では,圧縮された映像を直接視覚入力として利用する,圧縮された領域のTSGを提案する。
論文 参考訳(メタデータ) (2023-03-14T12:53:27Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
オートエンコーダは教師なしニューラルネットワークの一種であり、様々なタスクを解くのに使用できる。
本稿では,ボトルネック表現における特徴冗長性を明示的に罰する手法を提案する。
我々は,3つの異なるデータセットを用いた次元削減,MNISTデータセットを用いた画像圧縮,ファッションMNISTを用いた画像デノナイズという,さまざまなタスクにまたがってアプローチを検証した。
論文 参考訳(メタデータ) (2022-02-09T18:48:02Z) - End-to-end Neural Video Coding Using a Compound Spatiotemporal
Representation [33.54844063875569]
本稿では,2つの手法により生成された予測を適応的に組み合わせたハイブリッド動作補償法を提案する。
具体的には、リカレント情報集約(RIA)モジュールを用いて、複合時間表現(STR)を生成する。
さらに、ベクトルベースの再サンプリング、適応カーネルベースの再サンプリング、補償モード選択マップ、テクスチャ拡張を含む、CSTRから複数の予測を生成する1対多デコーダパイプラインを設計する。
論文 参考訳(メタデータ) (2021-08-05T19:43:32Z) - Generalized Octave Convolutions for Learned Multi-Frequency Image
Compression [20.504561050200365]
本稿では,初めて学習されたマルチ周波数画像圧縮とエントロピー符号化手法を提案する。
これは最近開発されたオクターブの畳み込みに基づいて、潜水剤を高周波(高分解能)成分に分解する。
提案した一般化オクターブ畳み込みは、他のオートエンコーダベースのコンピュータビジョンタスクの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-02-24T01:35:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。