論文の概要: Aligning Hyperbolic Representations: an Optimal Transport-based approach
- arxiv url: http://arxiv.org/abs/2012.01089v1
- Date: Wed, 2 Dec 2020 11:22:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 04:11:38.642244
- Title: Aligning Hyperbolic Representations: an Optimal Transport-based approach
- Title(参考訳): 双曲表現の整合:最適なトランスポートベースアプローチ
- Authors: Andr\'es Hoyos-Idrobo
- Abstract要約: この研究は、双曲空間のポアンカーモデルへの埋め込みのOTに基づく新しいアプローチを提案する。
この形式主義の結果として、我々はいくつかの既存の OT ベースの領域適応のユークリッド法への拡張を、その双曲的対応に導出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hyperbolic-spaces are better suited to represent data with underlying
hierarchical relationships, e.g., tree-like data. However, it is often
necessary to incorporate, through alignment, different but related
representations meaningfully. This aligning is an important class of machine
learning problems, with applications as ontology matching and cross-lingual
alignment. Optimal transport (OT)-based approaches are a natural choice to
tackle the alignment problem as they aim to find a transformation of the source
dataset to match a target dataset, subject to some distribution constraints.
This work proposes a novel approach based on OT of embeddings on the Poincar\'e
model of hyperbolic spaces. Our method relies on the gyrobarycenter mapping on
M\"obius gyrovector spaces. As a result of this formalism, we derive extensions
to some existing Euclidean methods of OT-based domain adaptation to their
hyperbolic counterparts. Empirically, we show that both Euclidean and
hyperbolic methods have similar performances in the context of retrieval.
- Abstract(参考訳): 双曲空間は木のようなデータのような階層的な関係を持つデータを表現するのに適している。
しかし、アライメントを通じて異なるが関連する表現を有意義に組み込むことがしばしば必要である。
このアライメントは、オントロジーマッチングや言語間アライメントといった応用を含む、マシンラーニング問題の重要なクラスである。
最適なトランスポート(ot)ベースのアプローチは、ターゲットデータセットにマッチするソースデータセットの変換を見つけることを目的としているため、アライメント問題に取り組むための自然な選択である。
この研究は、双曲空間のポアンカーイーモデルへの埋め込みのOTに基づく新しいアプローチを提案する。
提案手法は, M\"obius gyrovector space 上のジャイロ中心写像に依存する。
この形式化の結果として、otに基づくドメイン適応の既存のユークリッド法を双曲的対応に拡張する。
経験的に、ユークリッド法と双曲法の両方が検索の文脈で同様の性能を持つことを示した。
関連論文リスト
- Symmetry Discovery for Different Data Types [52.2614860099811]
等価ニューラルネットワークは、そのアーキテクチャに対称性を取り入れ、より高度な一般化性能を実現する。
本稿では,タスクの入出力マッピングを近似したトレーニングニューラルネットワークによる対称性発見手法であるLieSDを提案する。
我々は,2体問題,慣性行列予測のモーメント,トップクォークタグ付けといった課題におけるLieSDの性能を検証した。
論文 参考訳(メタデータ) (2024-10-13T13:39:39Z) - From Semantics to Hierarchy: A Hybrid Euclidean-Tangent-Hyperbolic Space Model for Temporal Knowledge Graph Reasoning [1.1372536310854844]
時間的知識グラフ(TKG)推論は、過去のデータに基づいて将来の出来事を予測する。
既存のユークリッドモデルはセマンティクスを捉えるのに優れているが、階層構造に苦しむ。
ユークリッドモデルと双曲モデルの両方の強みを利用する新しいハイブリッド幾何空間アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-30T10:33:08Z) - Geometrically Aligned Transfer Encoder for Inductive Transfer in
Regression Tasks [5.038936775643437]
微分幾何学に基づく新しい移動法,すなわち幾何学的配向変換(GATE)を提案する。
すべての任意の点が重なり合う領域の局所平坦な座標に写像されることを保証するために、タスクのペア間の適切な微分同相性を見つけ、ソースからターゲットデータへの知識の伝達を可能にする。
GATEは従来の手法より優れ、様々な分子グラフデータセットの潜伏空間と外挿領域の両方で安定した振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-10T07:11:25Z) - Federated Classification in Hyperbolic Spaces via Secure Aggregation of
Convex Hulls [35.327709607897944]
我々は,Poincareディスク用の凸SVM分類器の分散バージョンを開発した。
双曲空間における凸殻の複雑さを計算し,データ漏洩の程度を評価する。
本手法は, 階層的な単一細胞RNA-seqデータを含む, 多様なデータ集合を用いて, 異なるレポジトリに分散した患者から抽出した。
論文 参考訳(メタデータ) (2023-08-14T02:25:48Z) - Bayesian Hyperbolic Multidimensional Scaling [2.5944208050492183]
低次元多様体が双曲型であるとき、多次元スケーリングに対するベイズ的アプローチを提案する。
ケース制御可能性近似は、より大きなデータ設定における後部分布からの効率的なサンプリングを可能にする。
提案手法は,シミュレーション,標準基準データセット,インディアン村のネットワークデータ,およびヒトの遺伝子発現データを用いて,最先端の代替手法に対して評価する。
論文 参考訳(メタデータ) (2022-10-26T23:34:30Z) - HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric
Regularization [52.369435664689995]
HRCF (textitHyperbolic Regularization powered Collaborative Filtering) を導入し,幾何認識型双曲正規化器を設計する。
具体的には、ルートアライメントとオリジン認識ペナルティによる最適化手順を強化する。
提案手法は,双曲的凝集による過度な平滑化問題に対処でき,モデルの識別能力も向上する。
論文 参考訳(メタデータ) (2022-04-18T06:11:44Z) - Hyperbolic Vision Transformers: Combining Improvements in Metric
Learning [116.13290702262248]
計量学習のための新しい双曲型モデルを提案する。
本手法のコアとなるのは、双曲空間にマッピングされた出力埋め込みを備えた視覚変換器である。
4つのデータセットに6つの異なる定式化を施したモデルの評価を行った。
論文 参考訳(メタデータ) (2022-03-21T09:48:23Z) - Provably Accurate and Scalable Linear Classifiers in Hyperbolic Spaces [39.71927912296049]
スケーラブルで単純な双曲型線形分類器を学習するための統一的なフレームワークを提案する。
我々のアプローチの要点は、ポアンカーの球体モデルに焦点を合わせ、接空間形式を用いて分類問題を定式化することである。
Poincarの2階と戦略的パーセプトロンの優れた性能は、提案フレームワークが双曲空間における一般的な機械学習問題にまで拡張可能であることを示している。
論文 参考訳(メタデータ) (2022-03-07T21:36:21Z) - Switch Spaces: Learning Product Spaces with Sparse Gating [48.591045282317424]
製品空間における表現を学習するためのデータ駆動アプローチであるswitch spacesを提案する。
我々は空間の選択、結合、切り替えを学習するスパースゲーティング機構を導入する。
知識グラフの補完と項目レコメンデーションの実験により,提案したスイッチ空間が新たな最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2021-02-17T11:06:59Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
本稿では,カテゴリ間の相関を同時に利用し,各カテゴリ毎のセントロイドを整列させるために,aSimultaneous Semantic Alignment Network (SSAN)を提案する。
対象の擬似ラベルを利用することで、各カテゴリの特徴表現を整列させるために、ロバストな三重項中心のアライメント機構を明示的に適用する。
テキスト・ツー・イメージ、画像・画像・テキスト・ツー・テキストにわたる様々なHDAタスクの実験は、最先端のHDA手法に対するSSANの優位性を検証することに成功した。
論文 参考訳(メタデータ) (2020-08-04T16:20:37Z) - Graph Optimal Transport for Cross-Domain Alignment [121.80313648519203]
クロスドメインアライメントはコンピュータビジョンと自然言語処理の基本である。
我々は、最近の最適輸送(OT)の進歩から発芽する原則的なフレームワークであるグラフ最適輸送(GOT)を提案する。
実験は、幅広いタスクにわたるベースライン上でのGOTの一貫性のある性能を示す。
論文 参考訳(メタデータ) (2020-06-26T01:14:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。