論文の概要: Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation
- arxiv url: http://arxiv.org/abs/2507.11789v1
- Date: Tue, 15 Jul 2025 23:08:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.180236
- Title: Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation
- Title(参考訳): マニホールド補間のための単セルVAEにおける潜時ユークリッド幾何学の強制
- Authors: Alessandro Palma, Sergei Rybakov, Leon Hetzel, Stephan Günnemann, Fabian J. Theis,
- Abstract要約: 離散的様相変分オートエンコーダの潜在多様体をユークリッド幾何学へ正規化する訓練フレームワークであるFlatVIを紹介する。
遅延空間の直線を復号化された単セル多様体上の測地線に近似させることで、FlatVIは下流アプローチとの整合性を高める。
- 参考スコア(独自算出の注目度): 79.27003481818413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latent space interpolations are a powerful tool for navigating deep generative models in applied settings. An example is single-cell RNA sequencing, where existing methods model cellular state transitions as latent space interpolations with variational autoencoders, often assuming linear shifts and Euclidean geometry. However, unless explicitly enforced, linear interpolations in the latent space may not correspond to geodesic paths on the data manifold, limiting methods that assume Euclidean geometry in the data representations. We introduce FlatVI, a novel training framework that regularises the latent manifold of discrete-likelihood variational autoencoders towards Euclidean geometry, specifically tailored for modelling single-cell count data. By encouraging straight lines in the latent space to approximate geodesic interpolations on the decoded single-cell manifold, FlatVI enhances compatibility with downstream approaches that assume Euclidean latent geometry. Experiments on synthetic data support the theoretical soundness of our approach, while applications to time-resolved single-cell RNA sequencing data demonstrate improved trajectory reconstruction and manifold interpolation.
- Abstract(参考訳): 潜時空間補間は、応用された環境で深層生成モデルをナビゲートするための強力なツールである。
例えば、単細胞RNAシークエンシングでは、既存の方法では、線形シフトやユークリッド幾何学を仮定して、変分オートエンコーダを用いた潜時空間補間として細胞状態遷移をモデル化している。
しかし、明示的に強制されない限り、潜在空間における線型補間はデータ多様体上の測地パスとは対応せず、ユークリッド幾何学をデータ表現に仮定するメソッドを制限することができる。
本研究では, 離散様変分オートエンコーダの潜在多様体をユークリッド幾何学へ正規化するための新しいトレーニングフレームワークであるFlatVIを紹介する。
遅延空間の直線に復号化された単セル多様体上の測地的補間を近似するように促すことで、フラットVIはユークリッド潜在幾何学を仮定する下流アプローチとの整合性を高める。
合成データを用いた実験は, 提案手法の理論的健全性を支持する一方で, 時間分解単細胞RNAシークエンシングデータへの適用により, 軌道再構成と多様体補間の改善が示された。
関連論文リスト
- Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds [18.156807299614503]
本稿では,多様体学習と生成モデルを組み合わせた新しいフレームワークであるGeometry-Aware Generative Autoencoder (GAGA)を紹介する。
GAGAは、シミュレーションおよび実世界のデータセットにおける競合性能を示し、単一セルの集団レベルの軌道推定における最先端の手法よりも30%改善されている。
論文 参考訳(メタデータ) (2024-10-16T17:53:26Z) - Thinner Latent Spaces: Detecting Dimension and Imposing Invariance with Conformal Autoencoders [8.743941823307967]
ネットワークの潜在層内の直交関係を利用して、非線形多様体データセットの内在次元性を推定できることを示す。
微分幾何学に依拠する関係理論を概説し、対応する勾配偏光最適化アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-08-28T20:56:35Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
非定常データストリームのデータ幾何を探索することにより,新しい視点から連続学習を研究する。
提案手法は,新しいデータによって引き起こされる幾何構造に対応するために,基底空間の幾何学を動的に拡張する。
実験により,本手法はユークリッド空間で設計したベースライン法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-04-08T06:35:25Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - LOCA: LOcal Conformal Autoencoder for standardized data coordinates [6.608924227377152]
多様体の潜在変数に等長な $mathbbRd$ の埋め込みを学ぶ方法を提案する。
我々の埋め込みは, 変形を補正する埋め込みを構成するアルゴリズムであるLOCA (Local Conformal Autoencoder) を用いて得られる。
また、単一サイトWi-FiのローカライゼーションデータにLOCAを適用し、曲面推定を3ドルで行う。
論文 参考訳(メタデータ) (2020-04-15T17:49:37Z) - Uniform Interpolation Constrained Geodesic Learning on Data Manifold [28.509561636926414]
学習された測地線とともに、2つのデータサンプル間で高品質なデータを生成することができる。
提案手法の有効性を実証するために, モデルの理論解析を行い, 画像翻訳を例に挙げる。
論文 参考訳(メタデータ) (2020-02-12T07:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。