論文の概要: PlueckerNet: Learn to Register 3D Line Reconstructions
- arxiv url: http://arxiv.org/abs/2012.01096v1
- Date: Wed, 2 Dec 2020 11:31:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 03:59:00.797378
- Title: PlueckerNet: Learn to Register 3D Line Reconstructions
- Title(参考訳): PlueckerNet: 3Dライン再構築の登録を学ぶ
- Authors: Liu Liu, Hongdong Li, Haodong Yao and Ruyi Zha
- Abstract要約: 本稿では,ユークリッド空間における2つの部分重畳された3次元線再構成の問題をニューラルネットワークで解く手法を提案する。
室内および屋外の両方のデータセットを用いた実験により,本手法の登録精度(回転と翻訳)は,ベースラインを著しく上回ることがわかった。
- 参考スコア(独自算出の注目度): 57.20244406275875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning two partially-overlapped 3D line reconstructions in Euclidean space
is challenging, as we need to simultaneously solve correspondences and relative
pose between line reconstructions. This paper proposes a neural network based
method and it has three modules connected in sequence: (i) a Multilayer
Perceptron (MLP) based network takes Pluecker representations of lines as
inputs, to extract discriminative line-wise features and matchabilities (how
likely each line is going to have a match), (ii) an Optimal Transport (OT)
layer takes two-view line-wise features and matchabilities as inputs to
estimate a 2D joint probability matrix, with each item describes the matchness
of a line pair, and (iii) line pairs with Top-K matching probabilities are fed
to a 2-line minimal solver in a RANSAC framework to estimate a six
Degree-of-Freedom (6-DoF) rigid transformation. Experiments on both indoor and
outdoor datasets show that the registration (rotation and translation)
precision of our method outperforms baselines significantly.
- Abstract(参考訳): ユークリッド空間における2つの部分重畳された3次元直線再構成は、直線再構成間の対応と相対的なポーズを同時に解決する必要があるため、困難である。
This paper proposes a neural network based method and it has three modules connected in sequence: (i) a Multilayer Perceptron (MLP) based network takes Pluecker representations of lines as inputs, to extract discriminative line-wise features and matchabilities (how likely each line is going to have a match), (ii) an Optimal Transport (OT) layer takes two-view line-wise features and matchabilities as inputs to estimate a 2D joint probability matrix, with each item describes the matchness of a line pair, and (iii) line pairs with Top-K matching probabilities are fed to a 2-line minimal solver in a RANSAC framework to estimate a six Degree-of-Freedom (6-DoF) rigid transformation.
室内および屋外の両方のデータセットを用いた実験により,本手法の登録精度(回転と翻訳)がベースラインを著しく上回ることが示された。
関連論文リスト
- Semantic Line Combination Detector [17.60109693530759]
本稿では,セマンティック・ライン・コンビネーション・ディテクター (SLCD) と呼ばれる,セマンティック・ラインの最適組み合わせを求める新しいアルゴリズムを提案する。
各ラインの組み合わせで全てのラインを一度に処理し、ライン全体の調和を評価する。
実験により,提案したSLCDは,様々なデータセット上で既存の意味線検出器よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-04-29T03:21:05Z) - NEAT: Distilling 3D Wireframes from Neural Attraction Fields [52.90572335390092]
本稿では,3次元再構成セグメントと焦点接合を用いたラインフレーム接合の問題について検討する。
ProjectNEATは、クロスアートマッチングをゼロから行わずに、ジョイントニューラルフィールドとビューを楽しみます。
論文 参考訳(メタデータ) (2023-07-14T07:25:47Z) - IDLS: Inverse Depth Line based Visual-Inertial SLAM [9.38589798999922]
Inverse Depth Line SLAM (IDLS) を提案する。
IDLSは、複数の知覚的整合性データセットで広く評価されている。
論文 参考訳(メタデータ) (2023-04-23T20:53:05Z) - Holistically-Attracted Wireframe Parsing: From Supervised to
Self-Supervised Learning [112.54086514317021]
本稿では,線分とジャンクションを用いた幾何解析のためのホロスティック適応型ワイヤフレーム解析法を提案する。
提案したHAWPは、エンド・ツー・フォームの4Dラベルによって強化された3つのコンポーネントで構成されている。
論文 参考訳(メタデータ) (2022-10-24T06:39:32Z) - DFC: Deep Feature Consistency for Robust Point Cloud Registration [0.4724825031148411]
複雑なアライメントシーンのための学習に基づくアライメントネットワークを提案する。
我々は,3DMatchデータセットとKITTIオドメトリデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2021-11-15T08:27:21Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Subdivision-Based Mesh Convolution Networks [38.09613983540932]
畳み込みニューラルネットワーク(CNN)は、2Dコンピュータビジョンにおいて大きなブレークスルーをもたらした。
本稿では,ループ分割シーケンス接続を伴う3次元トライアングルメッシュのための新しいCNNフレームワークSubdivNetを提案する。
メッシュ分類,セグメンテーション,対応,実世界からの検索実験により,SubdivNetの有効性と有効性を示す。
論文 参考訳(メタデータ) (2021-06-04T06:50:34Z) - Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point
Problem [98.92148855291363]
本稿では、6-DoFの絶対カメラポーズ2D--3D対応を同時に解決するディープCNNモデルを提案する。
実データとシミュレーションデータの両方でテストした結果,本手法は既存手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-03-15T04:17:30Z) - Holistically-Attracted Wireframe Parsing [123.58263152571952]
本稿では,入力画像中のベクトル化ワイヤフレームを1つのフォワードパスで検出する高速で類似的な解析手法を提案する。
提案手法は, (i) ラインセグメントとジャンクション提案生成, (ii) ラインセグメントとジャンクションマッチング, (iii) ラインセグメントとジャンクション検証の3つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2020-03-03T17:43:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。