Microwave Package Design for Superconducting Quantum Processors
- URL: http://arxiv.org/abs/2012.01438v3
- Date: Wed, 24 Feb 2021 23:24:14 GMT
- Title: Microwave Package Design for Superconducting Quantum Processors
- Authors: Sihao Huang, Benjamin Lienhard, Greg Calusine, Antti Veps\"al\"ainen,
Jochen Braum\"uller, David K. Kim, Alexander J. Melville, Bethany M.
Niedzielski, Jonilyn L. Yoder, Bharath Kannan, Terry P. Orlando, Simon
Gustavsson, and William D. Oliver
- Abstract summary: We present an approach to microwave package design focusing on material choices, signal line engineering, and spurious mode suppression.
We describe design guidelines validated using simulations and measurements used to develop a 24-port microwave package.
The material and geometric design choices enable the package to support qubits with lifetimes exceeding 350 mus.
- Score: 41.74498230885008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solid-state qubits with transition frequencies in the microwave regime, such
as superconducting qubits, are at the forefront of quantum information
processing. However, high-fidelity, simultaneous control of superconducting
qubits at even a moderate scale remains a challenge, partly due to the
complexities of packaging these devices. Here, we present an approach to
microwave package design focusing on material choices, signal line engineering,
and spurious mode suppression. We describe design guidelines validated using
simulations and measurements used to develop a 24-port microwave package.
Analyzing the qubit environment reveals no spurious modes up to 11GHz. The
material and geometric design choices enable the package to support qubits with
lifetimes exceeding 350 {\mu}s. The microwave package design guidelines
presented here address many issues relevant for near-term quantum processors.
Related papers
- A superconducting on-chip microwave cavity for tunable hybrid systems with optically trapped Rydberg atoms [0.0]
Hybrid quantum systems are highly promising platforms for addressing challenges of quantum information science and quantum sensing.
Here, we work towards a hybrid system consisting of a superconducting on-chip microwave circuit in a dilution refrigerator and optically trapped ultra-cold atoms.
arXiv Detail & Related papers (2024-10-30T17:52:03Z) - A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing [7.742583250368887]
For superconducting quantum processors, microwave signals are delivered to each qubit from room-temperature electronics to the cryogenic environment through coaxial cables.
This architecture is not viable for millions of qubits required for fault-tolerant quantum computing.
Monolithic integration of the control electronics and the qubits provides a promising solution.
We report such a signal source driven by digital-like signals, generating pulsed microwave emission with well-controlled phase, intensity, and frequency directly at millikelvin temperatures.
arXiv Detail & Related papers (2024-07-16T14:33:18Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Heralding entangled optical photons from a microwave quantum processor [0.0]
We propose and analyze a quantum architecture that leverages the non-local connectivity of optics, along with the exquisite quantum control offered by superconducting microwave circuits.
We use squeezing between microwaves and optics to produce microwave-optical Bell pairs in a dual-rail encoding from a single microwave quantum processor.
Our scheme paves the way for small microwave quantum processors to create heralded entangled optical resource states for optical quantum computation, communication, and sensing.
arXiv Detail & Related papers (2023-08-27T18:30:33Z) - Entangling remote microwave quantum computers with hybrid entanglement
swap and variational distillation [4.046143379963425]
Superconducting microwave circuits with Josephson junctions are a major platform for quantum computing.
We propose a continuous-variable entanglement-swap approach based on optical-microwave entanglement generation.
Our work provides a practical method to realize efficient quantum links for superconducting microwave quantum computers.
arXiv Detail & Related papers (2022-06-29T14:34:29Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Microwaves in Quantum Computing [0.0]
We review the use of microwave signals and systems in quantum computing.
We highlight some key results and progress in quantum computing achieved through the use of microwave systems.
We discuss how quantum computing applications have pushed the frontiers of microwave technology in some areas.
arXiv Detail & Related papers (2020-11-03T04:56:50Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Universal Gate Set for Continuous-Variable Quantum Computation with
Microwave Circuits [101.18253437732933]
We provide an explicit construction of a universal gate set for continuous-variable quantum computation with microwave circuits.
As an application, we show that this architecture allows for the generation of a cubic phase state with an experimentally feasible procedure.
arXiv Detail & Related papers (2020-02-04T16:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.