論文の概要: Contour Transformer Network for One-shot Segmentation of Anatomical
Structures
- arxiv url: http://arxiv.org/abs/2012.01480v1
- Date: Wed, 2 Dec 2020 19:42:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 03:54:52.456406
- Title: Contour Transformer Network for One-shot Segmentation of Anatomical
Structures
- Title(参考訳): 解剖構造のワンショット分割のための輪郭変圧器ネットワーク
- Authors: Yuhang Lu, Kang Zheng, Weijian Li, Yirui Wang, Adam P. Harrison,
Chihung Lin, Song Wang, Jing Xiao, Le Lu, Chang-Fu Kuo, Shun Miao
- Abstract要約: 本稿では,自然に組み込まれたループ機構を備えたワンショット解剖分類手法であるContour Transformer Network(CTN)を提案する。
4つの解剖学のセグメンテーションタスクにおいて、我々のワンショット学習法が非学習的手法を著しく上回っていることを示す。
最小限のHuman-in-the-loop編集フィードバックにより、セグメンテーション性能は、完全に教師されたメソッドを超えるようにさらに改善される。
- 参考スコア(独自算出の注目度): 26.599337546171732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of anatomical structures is vital for medical image
analysis. The state-of-the-art accuracy is typically achieved by supervised
learning methods, where gathering the requisite expert-labeled image
annotations in a scalable manner remains a main obstacle. Therefore,
annotation-efficient methods that permit to produce accurate anatomical
structure segmentation are highly desirable. In this work, we present Contour
Transformer Network (CTN), a one-shot anatomy segmentation method with a
naturally built-in human-in-the-loop mechanism. We formulate anatomy
segmentation as a contour evolution process and model the evolution behavior by
graph convolutional networks (GCNs). Training the CTN model requires only one
labeled image exemplar and leverages additional unlabeled data through newly
introduced loss functions that measure the global shape and appearance
consistency of contours. On segmentation tasks of four different anatomies, we
demonstrate that our one-shot learning method significantly outperforms
non-learning-based methods and performs competitively to the state-of-the-art
fully supervised deep learning methods. With minimal human-in-the-loop editing
feedback, the segmentation performance can be further improved to surpass the
fully supervised methods.
- Abstract(参考訳): 解剖学的構造の正確なセグメンテーションは医用画像解析に不可欠である。
最先端の精度は一般的に教師付き学習手法によって達成され、必要な専門家ラベル付き画像アノテーションをスケーラブルに収集することが大きな障害となる。
したがって、正確な解剖学的構造セグメンテーションを作成できるアノテーション効率の高い手法が好ましい。
そこで本研究では,自然に組み込まれた人工ループ機構を用いた単発解剖セグメンテーション手法であるcontour transformer network(ctn)を提案する。
我々は、輪郭進化過程として解剖学的セグメンテーションを定式化し、グラフ畳み込みネットワーク(GCN)による進化挙動をモデル化する。
CTNモデルのトレーニングにはラベル付き画像のみが必要であり、輪郭のグローバルな形状と外観の整合性を測定するために新たに導入された損失関数を通じてラベルなしのデータを活用する。
4つの異なる解剖学のセグメンテーションタスクについて,本手法が非学習型手法を大幅に上回り,最先端のディープラーニング手法と競合することを示した。
最小限のHuman-in-the-loop編集フィードバックにより、セグメンテーション性能は、完全に教師されたメソッドを超えるようにさらに改善される。
関連論文リスト
- Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
臓器の数、形状、相対的な位置などの重要な解剖学的特徴は、堅牢な多臓器分割モデルの構築に不可欠である。
我々は Anatomy-Informed Network (AIC-Net) と呼ばれる新しいアーキテクチャを導入する。
AIC-Netは、患者固有の解剖学に適応できる「解剖学的事前」と呼ばれる学習可能な入力を組み込んでいる。
論文 参考訳(メタデータ) (2024-03-27T10:46:24Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
CTとMRIによる腹部臓器の分節は,手術計画とコンピュータ支援ナビゲーションシステムにとって必須の要件である。
肝, 腎, 膵, 脾の分節に対するテンプレートベースのメッシュ再構成法を応用した。
結果として得られたUNetFlowは4つの器官すべてによく当てはまり、新しいデータに基づいて簡単に微調整できる。
論文 参考訳(メタデータ) (2023-06-27T14:41:18Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - Unsupervised Domain Adaptation through Shape Modeling for Medical Image
Segmentation [23.045760366698634]
医用画像のセグメンテーションを支援するために, 形状を明示的にモデル化し, 利用することを目的としている。
従来の方法では、特定の臓器の形状の分布を学習するための変分オートエンコーダ(VAE)モデルが提案されていた。
本研究では,教師/学生の学習パラダイムの下で,擬似的損失とVAE再構成損失に基づく教師なしドメイン適応パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-06T09:16:42Z) - End-to-end Neuron Instance Segmentation based on Weakly Supervised
Efficient UNet and Morphological Post-processing [0.0]
組織像からNeuN染色神経細胞を自動的に検出し,分画するエンド・ツー・エンド・エンド・エンド型のフレームワークを提案する。
私たちは最先端のネットワークであるEfficientNetをU-Netのようなアーキテクチャに統合します。
論文 参考訳(メタデータ) (2022-02-17T14:35:45Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Learning to Segment Anatomical Structures Accurately from One Exemplar [34.287877547953194]
大量の注釈付きトレーニング画像を用いることなく、正確な解剖学的構造セグメンテーションを作成できる方法は、非常に望ましい。
本研究では,自然に組み込まれたループ機構を備えたワンショット解剖セグメントであるContour Transformer Network (CTN)を提案する。
筆者らのワンショット学習法は,非学習に基づく手法を著しく上回り,最先端の完全教師付きディープラーニングアプローチと競争的に機能することを示した。
論文 参考訳(メタデータ) (2020-07-06T20:27:38Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
前立腺MRIのセグメント化におけるモデル一般化を改善するために,新しい形状認識メタラーニング手法を提案する。
実験結果から,本手法は未確認領域の6つの設定すべてにおいて,最先端の一般化手法を一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-04T07:56:02Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。