Multicriteria Group Decision-Making Under Uncertainty Using Interval
Data and Cloud Models
- URL: http://arxiv.org/abs/2012.01569v1
- Date: Tue, 1 Dec 2020 06:34:48 GMT
- Title: Multicriteria Group Decision-Making Under Uncertainty Using Interval
Data and Cloud Models
- Authors: Hadi A. Khorshidi and Uwe Aickelin
- Abstract summary: We propose a multicriteria group decision making (MCGDM) algorithm under uncertainty where data is collected as intervals.
The proposed MCGDM algorithm aggregates the data, determines the optimal weights for criteria and ranks alternatives with no further input.
The proposed MCGDM algorithm is implemented on a case study of a cybersecurity problem to illustrate its feasibility and effectiveness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we propose a multicriteria group decision making (MCGDM)
algorithm under uncertainty where data is collected as intervals. The proposed
MCGDM algorithm aggregates the data, determines the optimal weights for
criteria and ranks alternatives with no further input. The intervals give
flexibility to experts in assessing alternatives against criteria and provide
an opportunity to gain maximum information. We also propose a novel method to
aggregate expert judgements using cloud models. We introduce an experimental
approach to check the validity of the aggregation method. After that, we use
the aggregation method for an MCGDM problem. Here, we find the optimal weights
for each criterion by proposing a bilevel optimisation model. Then, we extend
the technique for order of preference by similarity to ideal solution (TOPSIS)
for data based on cloud models to prioritise alternatives. As a result, the
algorithm can gain information from decision makers with different levels of
uncertainty and examine alternatives with no more information from
decision-makers. The proposed MCGDM algorithm is implemented on a case study of
a cybersecurity problem to illustrate its feasibility and effectiveness. The
results verify the robustness and validity of the proposed MCGDM using
sensitivity analysis and comparison with other existing algorithms.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
An efficient probabilistic selection based constrained multi-objective EA is proposed, referred to as PSCMOEA.
It comprises novel elements such as (a) an adaptive search bound identification scheme based on the feasibility and convergence status of evaluated solutions.
Numerical experiments are conducted on an extensive range of challenging constrained problems using low evaluation budgets to simulate ECMOPs.
arXiv Detail & Related papers (2024-05-22T02:32:58Z) - On the Global Solution of Soft k-Means [159.23423824953412]
This paper presents an algorithm to solve the Soft k-Means problem globally.
A new model, named Minimal Volume Soft kMeans (MVSkM), is proposed to address solutions non-uniqueness issue.
arXiv Detail & Related papers (2022-12-07T12:06:55Z) - Bi-objective Ranking and Selection Using Stochastic Kriging [0.0]
We consider bi-objective ranking and selection problems in which the two objective outcomes have been observed with uncertainty.
We propose a novel Bayesian bi-objective ranking and selection method that sequentially allocates extra samples to competitive solutions.
Experimental results show that the proposed method outperforms the standard allocation method, as well as a well-known state-of-the-art algorithm.
arXiv Detail & Related papers (2022-09-05T23:51:07Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity.
We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class.
We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset.
arXiv Detail & Related papers (2022-01-31T20:58:47Z) - A integrating critic-waspas group decision making method under
interval-valued q-rung orthogonal fuzzy enviroment [0.0]
This paper provides a new tool for multi-attribute multi-objective group decision-making with unknown weights and attributes' weights.
An interval-valued generalized fuzzy group decision-making method is proposed based on the Yager operator and CRITIC-WASPAS method with unknown weights.
Its merits lie in allowing decision-makers greater freedom, avoiding bias due to decision-makers' weight, and yielding accurate evaluation.
arXiv Detail & Related papers (2022-01-04T08:11:28Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Modularity in Reinforcement Learning via Algorithmic Independence in
Credit Assignment [79.5678820246642]
We show that certain action-value methods are more sample efficient than policy-gradient methods on transfer problems that require only sparse changes to a sequence of previously optimal decisions.
We generalize the recently proposed societal decision-making framework as a more granular formalism than the Markov decision process.
arXiv Detail & Related papers (2021-06-28T21:29:13Z) - A study of the Multicriteria decision analysis based on the time-series
features and a TOPSIS method proposal for a tensorial approach [1.3750624267664155]
We propose a new approach to rank the alternatives based on the criteria time-series features (tendency, variance, etc.)
In this novel approach, the data is structured in three dimensions, which require a more complex data structure, as the textittensors.
Computational results reveal that it is possible to rank the alternatives from a new perspective by considering meaningful decision-making information.
arXiv Detail & Related papers (2020-10-21T14:37:02Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.