論文の概要: Multilingual Neural RST Discourse Parsing
- arxiv url: http://arxiv.org/abs/2012.01704v1
- Date: Thu, 3 Dec 2020 05:03:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-23 15:00:48.573267
- Title: Multilingual Neural RST Discourse Parsing
- Title(参考訳): 多言語神経rst談話解析
- Authors: Zhengyuan Liu, Ke Shi, Nancy F. Chen
- Abstract要約: 本稿では,多言語ベクトル表現とセグメントレベルの翻訳によるニューラル言語間対話を確立するための2つの手法について検討する。
実験結果から,両手法は訓練データに制限があっても有効であり,言語横断的,文書レベルの談話解析における最先端性能を実現することができることがわかった。
- 参考スコア(独自算出の注目度): 24.986030179701405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text discourse parsing plays an important role in understanding information
flow and argumentative structure in natural language. Previous research under
the Rhetorical Structure Theory (RST) has mostly focused on inducing and
evaluating models from the English treebank. However, the parsing tasks for
other languages such as German, Dutch, and Portuguese are still challenging due
to the shortage of annotated data. In this work, we investigate two approaches
to establish a neural, cross-lingual discourse parser via: (1) utilizing
multilingual vector representations; and (2) adopting segment-level translation
of the source content. Experiment results show that both methods are effective
even with limited training data, and achieve state-of-the-art performance on
cross-lingual, document-level discourse parsing on all sub-tasks.
- Abstract(参考訳): 自然言語における情報の流れや議論的構造を理解する上で,文言解析は重要な役割を果たす。
RST(Rhetorical Structure Theory)の下でのこれまでの研究は、主にイギリスのツリーバンクのモデルの作成と評価に重点を置いてきた。
しかし、ドイツ語、オランダ語、ポルトガル語などの他の言語に対する構文解析タスクは、注釈付きデータの不足のため依然として困難である。
本研究では,(1)多言語ベクトル表現を活用すること,(2)ソースコンテンツのセグメントレベルの翻訳を採用することによる,ニューラルな言語間対話パーサを確立するための2つの手法について検討する。
実験結果から,両手法は訓練データに制限があっても有効であり,すべてのサブタスクにおいて,言語横断で文書レベルの言論解析を行う上で,最先端の性能を実現することができることがわかった。
関連論文リスト
- Bilingual Rhetorical Structure Parsing with Large Parallel Annotations [5.439020425819001]
我々は,大規模で多様な英語GUM RSTコーパスに対して,パラレルなロシア語アノテーションを導入する。
我々のエンドツーエンドRTTは、英語とロシア語のコーパスで最先端の結果を得る。
我々の知る限り、この研究は、手動で注釈付けされた並列コーパス上での言語間エンドツーエンドのRTT解析の可能性を評価する最初のものである。
論文 参考訳(メタデータ) (2024-09-23T12:40:33Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
我々は22言語以上で訓練された多言語エンドツーエンド音声翻訳モデルで学習した表現を解析する。
我々は分析から3つの大きな発見を得た。
論文 参考訳(メタデータ) (2023-10-31T13:50:55Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - DMRST: A Joint Framework for Document-Level Multilingual RST Discourse
Segmentation and Parsing [24.986030179701405]
本稿では,EDUセグメンテーションと談話木解析を共同で行う文書レベルの多言語RST談話解析フレームワークを提案する。
本モデルは,すべてのサブタスクにおいて,文書レベルの多言語RST解析における最先端性能を実現する。
論文 参考訳(メタデータ) (2021-10-09T09:15:56Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
本研究では、事前学習された言語モデルを用いて、文章の感情情報を学習し、音声の感情分析を行う。
本稿では,言語モデルを用いた擬似ラベルに基づく半教師付き訓練戦略を提案する。
論文 参考訳(メタデータ) (2021-06-11T20:15:21Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
そこで本研究では, ERICA という新たなコントラスト学習フレームワークを提案し, エンティティとその関係をテキストでより深く理解する。
実験の結果,提案する erica フレームワークは文書レベルの言語理解タスクにおいて一貫した改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:35:22Z) - A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization with
Bilingual Semantic Similarity Rewards [40.17497211507507]
言語間テキスト要約は、実際は重要だが未探索の課題である。
本稿では,エンドツーエンドのテキスト要約モデルを提案する。
論文 参考訳(メタデータ) (2020-06-27T21:51:38Z) - On the Language Neutrality of Pre-trained Multilingual Representations [70.93503607755055]
語彙意味論に関して,多言語文脈埋め込みの言語中立性を直接的に検討する。
その結果、文脈埋め込みは言語ニュートラルであり、概して静的な単語型埋め込みよりも情報的であることがわかった。
本稿では,言語識別における最先端の精度に到達し,並列文の単語アライメントのための統計的手法の性能を一致させる方法について述べる。
論文 参考訳(メタデータ) (2020-04-09T19:50:32Z) - Investigating Language Impact in Bilingual Approaches for Computational
Language Documentation [28.838960956506018]
本稿では,翻訳言語の選択が後続文書作業に与える影響について検討する。
我々は56対のバイリンガルペアを作成し、低リソースの教師なし単語分割とアライメントのタスクに適用する。
この結果から,ニューラルネットワークの入力表現に手がかりを取り入れることで,翻訳品質とアライメント品質が向上することが示唆された。
論文 参考訳(メタデータ) (2020-03-30T10:30:34Z) - A Hybrid Approach to Dependency Parsing: Combining Rules and Morphology
with Deep Learning [0.0]
本稿では,特に訓練データ量に制限のある言語に対して,依存関係解析の2つのアプローチを提案する。
第1のアプローチは、最先端のディープラーニングとルールベースのアプローチを組み合わせ、第2のアプローチは、形態情報をネットワークに組み込む。
提案手法はトルコ語向けに開発されたが、他の言語にも適用可能である。
論文 参考訳(メタデータ) (2020-02-24T08:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。