論文の概要: Investigating Language Impact in Bilingual Approaches for Computational
Language Documentation
- arxiv url: http://arxiv.org/abs/2003.13325v1
- Date: Mon, 30 Mar 2020 10:30:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-18 07:38:04.236563
- Title: Investigating Language Impact in Bilingual Approaches for Computational
Language Documentation
- Title(参考訳): 計算言語ドキュメントのためのバイリンガルアプローチにおける言語影響の調査
- Authors: Marcely Zanon Boito, Aline Villavicencio, Laurent Besacier
- Abstract要約: 本稿では,翻訳言語の選択が後続文書作業に与える影響について検討する。
我々は56対のバイリンガルペアを作成し、低リソースの教師なし単語分割とアライメントのタスクに適用する。
この結果から,ニューラルネットワークの入力表現に手がかりを取り入れることで,翻訳品質とアライメント品質が向上することが示唆された。
- 参考スコア(独自算出の注目度): 28.838960956506018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For endangered languages, data collection campaigns have to accommodate the
challenge that many of them are from oral tradition, and producing
transcriptions is costly. Therefore, it is fundamental to translate them into a
widely spoken language to ensure interpretability of the recordings. In this
paper we investigate how the choice of translation language affects the
posterior documentation work and potential automatic approaches which will work
on top of the produced bilingual corpus. For answering this question, we use
the MaSS multilingual speech corpus (Boito et al., 2020) for creating 56
bilingual pairs that we apply to the task of low-resource unsupervised word
segmentation and alignment. Our results highlight that the choice of language
for translation influences the word segmentation performance, and that
different lexicons are learned by using different aligned translations. Lastly,
this paper proposes a hybrid approach for bilingual word segmentation,
combining boundary clues extracted from a non-parametric Bayesian model
(Goldwater et al., 2009a) with the attentional word segmentation neural model
from Godard et al. (2018). Our results suggest that incorporating these clues
into the neural models' input representation increases their translation and
alignment quality, specially for challenging language pairs.
- Abstract(参考訳): 絶滅危惧言語にとって、データ収集キャンペーンは、多くが口承の伝統から来ているという課題に対応しなければならない。
そのため、録音の解釈可能性を確保するため、広く話される言語に翻訳することが基本である。
本稿では,翻訳言語の選択が後続文書作成作業と,生成したバイリンガルコーパス上で機能する潜在的自動アプローチにどのように影響するかを検討する。
この質問に答えるためには,多言語音声コーパス(boito et al., 2020)を用いて,低リソースの非教師なし単語のセグメンテーションとアライメントのタスクに適用する,56のバイリンガルペアを作成する。
以上の結果から,翻訳言語の選択は単語のセグメンテーション性能に影響を与え,異なる辞書は異なるアライメント翻訳を用いて学習されることが明らかとなった。
最後に,非パラメトリックベイズモデル (Goldwater et al., 2009a) から抽出した境界手がかりとGodard et al. (2018) から抽出した注目単語分割ニューラルモデルを組み合わせたバイリンガル単語セグメンテーションのハイブリッド手法を提案する。
これらの手がかりをニューラルネットワークの入力表現に組み込むことで翻訳とアライメントの品質が向上することが示唆された。
関連論文リスト
- T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Extracting and filtering paraphrases by bridging natural language
inference and paraphrasing [0.0]
本研究では,NLIデータセットからパラフレージングデータセットを抽出し,既存のパラフレージングデータセットをクリーニングするための新しい手法を提案する。
その結果,既存の2つのパラフレージングデータセットにおいて,抽出したパラフレージングデータセットの品質と驚くほど高いノイズレベルが示された。
論文 参考訳(メタデータ) (2021-11-13T14:06:37Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization with
Bilingual Semantic Similarity Rewards [40.17497211507507]
言語間テキスト要約は、実際は重要だが未探索の課題である。
本稿では,エンドツーエンドのテキスト要約モデルを提案する。
論文 参考訳(メタデータ) (2020-06-27T21:51:38Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z) - Robust Cross-lingual Embeddings from Parallel Sentences [65.85468628136927]
本稿では,文整合コーパスを利用して頑健な言語間単語表現を実現するCBOW手法のバイリンガル拡張を提案する。
提案手法は,他のすべての手法と比較して,言語間文検索性能を著しく向上させる。
また、ゼロショットのクロスランガル文書分類タスクにおいて、ディープRNN法と同等性を実現する。
論文 参考訳(メタデータ) (2019-12-28T16:18:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。