Satellite Quantum Communications: Fundamental Bounds and Practical
Security
- URL: http://arxiv.org/abs/2012.01725v4
- Date: Wed, 19 May 2021 14:52:47 GMT
- Title: Satellite Quantum Communications: Fundamental Bounds and Practical
Security
- Authors: Stefano Pirandola
- Abstract summary: We apply and extend recent results in free-space quantum communications to determine the ultimate limits at which secret bits can be distributed via satellites.
We study the composable finite-size secret key rates that are achievable by protocols of continuous variable quantum key distribution.
We present a study with a sun-synchronous satellite, showing that its key distribution rate is able to outperform a ground chain of ideal quantum repeaters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Satellite quantum communications are emerging within the panorama of quantum
technologies as a more effective strategy to distribute completely-secure keys
at very long distances, therefore playing an important role in the architecture
of a large-scale quantum network. In this work, we apply and extend recent
results in free-space quantum communications to determine the ultimate limits
at which secret (and entanglement) bits can be distributed via satellites. Our
study is comprehensive of the various practical scenarios, encompassing both
downlink and uplink configurations, with satellites at different altitudes and
zenith angles. It includes effects of diffraction, extinction, background noise
and fading, due to pointing errors and atmospheric turbulence (appropriately
developed for slant distances). Besides identifying upper bounds, we also
discuss lower bounds, i.e., achievable rates for key generation and
entanglement distribution. In particular, we study the composable finite-size
secret key rates that are achievable by protocols of continuous variable
quantum key distribution, for both downlink and uplink, showing the feasibility
of this approach for all configurations. Finally, we present a study with a
sun-synchronous satellite, showing that its key distribution rate is able to
outperform a ground chain of ideal quantum repeaters.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - A CubeSat platform for space based quantum key distribution [62.997667081978825]
We report on the follow-up mission of SpooQy-1, a 3U CubeSat that successfully demonstrated the generation of polarization-entangled photons in orbit.
The next iteration of the mission will showcase satellite-to-ground quantum key distribution based on a compact source of polarization-entangled photon-pairs.
We briefly describe the design of the optical ground station that we are currently building in Singapore for receiving the quantum signal.
arXiv Detail & Related papers (2022-04-23T06:28:43Z) - Exploiting potentialities for space-based quantum communication network:
downlink quantum key distribution modelling and scheduling analysis [8.25191890593706]
We consider an evolved quantum network from a near-term form, in which a space-based relay, satellite executes a sequence of satellite-based quantum key distribution missions.
We develop a comprehensive framework for the dynamic simulation of SatQKD and consider scheduling QKD downlink in future space-based quantum communication network.
arXiv Detail & Related papers (2021-06-02T07:10:08Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Quantum Keyless Privacy vs. Quantum Key Distribution for Space Links [0.0]
We study information theoretical security for space links between a satellite and a ground-station.
We demonstrate information theoretical secure communication rates (positive keyless private capacity) over a classical-quantum wiretap channel.
arXiv Detail & Related papers (2020-12-07T01:33:40Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Limits and Security of Free-Space Quantum Communications [0.0]
We show that the composable secret-key rate achievable by a suitable coherent-state protocol is sufficiently close to these limits.
Our work provides analytical tools for assessing the composable finite-size security of coherent-state protocols in general conditions.
arXiv Detail & Related papers (2020-10-08T18:00:02Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Quantum repeaters in space [0.0]
Long-distance entanglement is a very precious resource, but its distribution is difficult due to the exponential losses of light in optical fibres.
We propose to combine quantum repeaters and satellite-based links, into a scheme that allows to achieve entanglement distribution over global distances.
The integration of satellite-based links with ground repeater networks can be envisaged to represent the backbone of the future Quantum Internet.
arXiv Detail & Related papers (2020-05-20T15:43:42Z) - Feasibility of satellite-to-ground continuous-variable quantum key
distribution [0.23090185577016442]
We study the feasibility of establishing secret keys in a satellite-to-ground downlink configuration using continuous-variable encoding.
We find positive secret key rates for a low-Earth-orbit scenario, while finite-size effects can be a limiting factor for higher orbits.
arXiv Detail & Related papers (2020-02-05T21:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.