Limits and Security of Free-Space Quantum Communications
- URL: http://arxiv.org/abs/2010.04168v3
- Date: Thu, 6 May 2021 21:36:27 GMT
- Title: Limits and Security of Free-Space Quantum Communications
- Authors: Stefano Pirandola
- Abstract summary: We show that the composable secret-key rate achievable by a suitable coherent-state protocol is sufficiently close to these limits.
Our work provides analytical tools for assessing the composable finite-size security of coherent-state protocols in general conditions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of free-space quantum communications requires tools from quantum
information theory, optics and turbulence theory. Here we combine these tools
to bound the ultimate rates for key and entanglement distribution through a
free-space link, where the propagation of quantum systems is generally affected
by diffraction, atmospheric extinction, turbulence, pointing errors, and
background noise. Besides establishing ultimate limits, we also show that the
composable secret-key rate achievable by a suitable (pilot-guided and
post-selected) coherent-state protocol is sufficiently close to these limits,
therefore showing the suitability of free-space channels for high-rate quantum
key distribution. Our work provides analytical tools for assessing the
composable finite-size security of coherent-state protocols in general
conditions, from the standard assumption of a stable communication channel (as
is typical in fiber-based connections) to the more challenging scenario of a
fading channel (as is typical in free-space links).
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Discrete-Modulated Continuous-Variable Quantum Key Distribution in Satellite-to-Ground Communication [1.9345871987291465]
Continuous-variable quantum key distribution is a strong candidate for space-ground quantum communication.
We derive key rates for discrete-modulated continuous-variable quantum key distribution protocols in free-space channel environments.
arXiv Detail & Related papers (2024-06-20T10:10:48Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Eavesdropper localization for quantum and classical channels via
nonlinear scattering [58.720142291102135]
Quantum key distribution (QKD) offers theoretical security based on the laws of physics.
We present a novel approach to eavesdropper location that can be employed in quantum as well as classical channels.
We demonstrate that our approach outperforms conventional OTDR in the task of localizing an evanescent outcoupling of 1% with cm precision inside standard optical fibers.
arXiv Detail & Related papers (2023-06-25T21:06:27Z) - Continuous-Variable Measurement-Device-Independent Quantum Key
Distribution in Free-Space Channels [0.0]
We study continuous-variable (CV) quantum key distribution (QKD) in a measurement-device-independent (MDI) configuration over free-space optical (FSO) links.
We assess the turbulence regime and provide a composable finite-size key rate analysis of the protocol for FSO links.
arXiv Detail & Related papers (2022-12-13T16:02:35Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum Keyless Privacy vs. Quantum Key Distribution for Space Links [0.0]
We study information theoretical security for space links between a satellite and a ground-station.
We demonstrate information theoretical secure communication rates (positive keyless private capacity) over a classical-quantum wiretap channel.
arXiv Detail & Related papers (2020-12-07T01:33:40Z) - Satellite Quantum Communications: Fundamental Bounds and Practical
Security [0.0]
We apply and extend recent results in free-space quantum communications to determine the ultimate limits at which secret bits can be distributed via satellites.
We study the composable finite-size secret key rates that are achievable by protocols of continuous variable quantum key distribution.
We present a study with a sun-synchronous satellite, showing that its key distribution rate is able to outperform a ground chain of ideal quantum repeaters.
arXiv Detail & Related papers (2020-12-03T06:53:57Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Ultimate limits for multiple quantum channel discrimination [0.966840768820136]
This paper studies the problem of hypothesis testing with quantum channels.
We establish a lower limit for the ultimate error probability affecting the discrimination of an arbitrary number of quantum channels.
We also show that this lower bound is achievable when the channels have certain symmetries.
arXiv Detail & Related papers (2020-07-29T03:08:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.