Quantum repeaters in space
- URL: http://arxiv.org/abs/2005.10146v1
- Date: Wed, 20 May 2020 15:43:42 GMT
- Title: Quantum repeaters in space
- Authors: Carlo Liorni, Hermann Kampermann, Dagmar Bruss
- Abstract summary: Long-distance entanglement is a very precious resource, but its distribution is difficult due to the exponential losses of light in optical fibres.
We propose to combine quantum repeaters and satellite-based links, into a scheme that allows to achieve entanglement distribution over global distances.
The integration of satellite-based links with ground repeater networks can be envisaged to represent the backbone of the future Quantum Internet.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-distance entanglement is a very precious resource, but its distribution
is very difficult due to the exponential losses of light in optical fibres. A
possible solution consists in the use of quantum repeaters, based on
entanglement swapping or quantum error correction. Alternatively,
satellite-based free-space optical links can be exploited, achieving better
loss-distance scaling. We propose to combine these two ingredients, quantum
repeaters and satellite-based links, into a scheme that allows to achieve
entanglement distribution over global distances with a small number of
intermediate untrusted nodes. The entanglement sources, placed on satellites,
send quantum states encoded in photons towards orbiting quantum repeater
stations, where entanglement swapping is performed. The performance of this
repeater chain is assessed in terms of the secret key rate achievable by the
BB-84 cryptographic protocol. We perform a comparison with other repeater chain
architectures and show that our scheme is superior in almost every situation,
achieving higher key rates, reliability and flexibility. Finally, we analyse
the feasibility of the implementation in the mid-term future and discuss
exemplary orbital configurations. The integration of satellite-based links with
ground repeater networks can be envisaged to represent the backbone of the
future Quantum Internet.
Related papers
- Entanglement Swapping in Orbit: a Satellite Quantum Link Case Study [0.3958317527488534]
We study the performance of a quantum link between two ground stations using a quantum-memory-equipped satellite as a quantum repeater.
The number of available quantum memory slots m, together with the unavoidable round-trip communication latency t of at least a few milliseconds, severely reduces the effective average repetition rate to m/t.
arXiv Detail & Related papers (2024-05-13T09:52:50Z) - Asynchronous Quantum Repeater using Multiple Quantum Memory [0.6445605125467574]
A full-fledged quantum network relies on the formation of entangled links between remote location with the help of quantum repeaters.
We propose a quantum repeater protocol using the idea of post-matching, which retains the same efficiency as the single-photon interference protocol.
arXiv Detail & Related papers (2024-01-11T08:24:37Z) - Scalable Quantum Repeater Deployment Modeling [3.7710541619011737]
Long-distance quantum communication presents a significant challenge as maintaining the fidelity of qubits can be difficult.
We present novel models to quickly determine a minimum number of quantum repeaters to deploy in large-scale networks.
arXiv Detail & Related papers (2023-05-16T23:54:41Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - A CubeSat platform for space based quantum key distribution [62.997667081978825]
We report on the follow-up mission of SpooQy-1, a 3U CubeSat that successfully demonstrated the generation of polarization-entangled photons in orbit.
The next iteration of the mission will showcase satellite-to-ground quantum key distribution based on a compact source of polarization-entangled photon-pairs.
We briefly describe the design of the optical ground station that we are currently building in Singapore for receiving the quantum signal.
arXiv Detail & Related papers (2022-04-23T06:28:43Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Roadmap for Rare-earth Quantum Computing [42.0895440675898]
Rare-earth ions in solids constitute one of the most versatile platforms for future quantum technology.
One advantage is good coherence properties even when confined in strong natural traps inside a solid-state matrix.
clusters of 50-100 single RE ions can act as high fidelity qubits in small processors.
arXiv Detail & Related papers (2021-03-29T16:28:29Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Satellite Quantum Communications: Fundamental Bounds and Practical
Security [0.0]
We apply and extend recent results in free-space quantum communications to determine the ultimate limits at which secret bits can be distributed via satellites.
We study the composable finite-size secret key rates that are achievable by protocols of continuous variable quantum key distribution.
We present a study with a sun-synchronous satellite, showing that its key distribution rate is able to outperform a ground chain of ideal quantum repeaters.
arXiv Detail & Related papers (2020-12-03T06:53:57Z) - Optimizing Entanglement Generation and Distribution Using Genetic
Algorithms [0.640476282000118]
Long-distance quantum communication via entanglement distribution is of great importance for the quantum internet.
Quantum repeaters could in theory be used to extend the distances over which entanglement can be distributed, but in practice hardware quality is still lacking.
We propose a methodology based on genetic algorithms and simulations of quantum repeater chains for optimization of entanglement generation and distribution.
arXiv Detail & Related papers (2020-10-30T17:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.