Object-Driven Active Mapping for More Accurate Object Pose Estimation
and Robotic Grasping
- URL: http://arxiv.org/abs/2012.01788v2
- Date: Mon, 8 Mar 2021 14:56:49 GMT
- Title: Object-Driven Active Mapping for More Accurate Object Pose Estimation
and Robotic Grasping
- Authors: Yanmin Wu, Yunzhou Zhang, Delong Zhu, Xin Chen, Sonya Coleman, Wenkai
Sun, Xinggang Hu, Zhiqiang Deng
- Abstract summary: The framework is built on an object SLAM system integrated with a simultaneous multi-object pose estimation process.
By combining the mapping module and the exploration strategy, an accurate object map that is compatible with robotic grasping can be generated.
- Score: 5.385583891213281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the first active object mapping framework for complex
robotic grasping tasks. The framework is built on an object SLAM system
integrated with a simultaneous multi-object pose estimation process. Aiming to
reduce the observation uncertainty on target objects and increase their pose
estimation accuracy, we also design an object-driven exploration strategy to
guide the object mapping process. By combining the mapping module and the
exploration strategy, an accurate object map that is compatible with robotic
grasping can be generated. Quantitative evaluations also show that the proposed
framework has a very high mapping accuracy. Manipulation experiments, including
object grasping, object placement, and the augmented reality, significantly
demonstrate the effectiveness and advantages of our proposed framework.
Related papers
- Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - Simultaneous Detection and Interaction Reasoning for Object-Centric Action Recognition [21.655278000690686]
We propose an end-to-end object-centric action recognition framework.
It simultaneously performs Detection And Interaction Reasoning in one stage.
We conduct experiments on two datasets, Something-Else and Ikea-Assembly.
arXiv Detail & Related papers (2024-04-18T05:06:12Z) - Object-centric Video Representation for Long-term Action Anticipation [33.115854386196126]
Key motivation is that objects provide important cues to recognize and predict human-object interactions.
We propose to build object-centric video representations by leveraging visual-language pretrained models.
To recognize and predict human-object interactions, we use a Transformer-based neural architecture.
arXiv Detail & Related papers (2023-10-31T22:54:31Z) - UniQuadric: A SLAM Backend for Unknown Rigid Object 3D Tracking and
Light-Weight Modeling [7.626461564400769]
We propose a novel SLAM backend that unifies ego-motion tracking, rigid object motion tracking, and modeling.
Our system showcases the potential application of object perception in complex dynamic scenes.
arXiv Detail & Related papers (2023-09-29T07:50:09Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - An Object SLAM Framework for Association, Mapping, and High-Level Tasks [12.62957558651032]
We present a comprehensive object SLAM framework that focuses on object-based perception and object-oriented robot tasks.
A range of public datasets and real-world results have been used to evaluate the proposed object SLAM framework for its efficient performance.
arXiv Detail & Related papers (2023-05-12T08:10:14Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
Training agents to manipulate objects, poses many challenges.
We propose an approach that explores the environment in search for target objects, computes their 3D coordinates once they are located, and then continues to estimate their 3D locations even when the objects are not visible.
Our evaluations show a massive 3x improvement in success rate over a model that has access to the same sensory suite.
arXiv Detail & Related papers (2022-03-15T17:59:01Z) - SafePicking: Learning Safe Object Extraction via Object-Level Mapping [19.502587411252946]
We present a system, SafePicking, that integrates object-level mapping and learning-based motion planning.
Planning is done by learning a deep Q-network that receives observations of predicted poses and a depth-based heightmap to output a motion trajectory.
Our results show that the observation fusion of poses and depth-sensing gives both better performance and robustness to the model.
arXiv Detail & Related papers (2022-02-11T18:55:10Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z) - Look-into-Object: Self-supervised Structure Modeling for Object
Recognition [71.68524003173219]
We propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions.
We show the recognition backbone can be substantially enhanced for more robust representation learning.
Our approach achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft)
arXiv Detail & Related papers (2020-03-31T12:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.