Supervised Pretraining for Molecular Force Fields and Properties
Prediction
- URL: http://arxiv.org/abs/2211.14429v1
- Date: Wed, 23 Nov 2022 08:36:50 GMT
- Title: Supervised Pretraining for Molecular Force Fields and Properties
Prediction
- Authors: Xiang Gao, Weihao Gao, Wenzhi Xiao, Zhirui Wang, Chong Wang, Liang
Xiang
- Abstract summary: We propose to pretrain neural networks on a dataset of 86 millions of molecules with atom charges and 3D geometries as inputs and molecular energies as labels.
Experiments show that, compared to training from scratch, fine-tuning the pretrained model can significantly improve the performance for seven molecular property prediction tasks and two force field tasks.
- Score: 16.86839767858162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning approaches have become popular for molecular modeling tasks,
including molecular force fields and properties prediction. Traditional
supervised learning methods suffer from scarcity of labeled data for particular
tasks, motivating the use of large-scale dataset for other relevant tasks. We
propose to pretrain neural networks on a dataset of 86 millions of molecules
with atom charges and 3D geometries as inputs and molecular energies as labels.
Experiments show that, compared to training from scratch, fine-tuning the
pretrained model can significantly improve the performance for seven molecular
property prediction tasks and two force field tasks. We also demonstrate that
the learned representations from the pretrained model contain adequate
information about molecular structures, by showing that linear probing of the
representations can predict many molecular information including atom types,
interatomic distances, class of molecular scaffolds, and existence of molecular
fragments. Our results show that supervised pretraining is a promising research
direction in molecular modeling
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - Unraveling Key Elements Underlying Molecular Property Prediction: A
Systematic Study [27.56700461408765]
Key elements underlying molecular property prediction remain largely unexplored.
We conduct an extensive evaluation of representative models using various representations on the MoleculeNet datasets.
In total, we have trained 62,820 models, including 50,220 models on fixed representations, 4,200 models on SMILES sequences and 8,400 models on molecular graphs.
arXiv Detail & Related papers (2022-09-26T14:07:59Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular
Property Prediction [13.55018269009361]
We introduce Knowledge-guided Pre-training of Graph Transformer (KPGT), a novel self-supervised learning framework for molecular graph representation learning.
KPGT can offer superior performance over current state-of-the-art methods on several molecular property prediction tasks.
arXiv Detail & Related papers (2022-06-02T08:22:14Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
We develop MoleculeKit, a suite of comprehensive machine learning tools spanning different computational models and molecular representations.
Built on these representations, MoleculeKit includes both deep learning and traditional machine learning methods for graph and sequence data.
Results on both online and offline antibiotics discovery and molecular property prediction tasks show that MoleculeKit achieves consistent improvements over prior methods.
arXiv Detail & Related papers (2020-12-02T02:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.