Assessing Language Disorders using Artificial Intelligence: a Paradigm
Shift
- URL: http://arxiv.org/abs/2305.20046v2
- Date: Wed, 6 Dec 2023 11:33:43 GMT
- Title: Assessing Language Disorders using Artificial Intelligence: a Paradigm
Shift
- Authors: Charalambos Themistocleous and Kyrana Tsapkini and Dimitrios
Kokkinakis
- Abstract summary: Speech, language, and communication deficits are present in most neurodegenerative syndromes.
We argue that using machine learning methodologies, natural language processing, and modern artificial intelligence (AI) for Language Assessment is an improvement over conventional manual assessment.
- Score: 0.13393465195776774
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech, language, and communication deficits are present in most
neurodegenerative syndromes. They enable the early detection, diagnosis,
treatment planning, and monitoring of neurocognitive disease progression as
part of traditional neurological assessment. Nevertheless, standard speech and
language evaluation is time-consuming and resource-intensive for clinicians. We
argue that using machine learning methodologies, natural language processing,
and modern artificial intelligence (AI) for Language Assessment is an
improvement over conventional manual assessment. Using these methodologies,
Computational Language Assessment (CLA) accomplishes three goals: (i) provides
a neuro-cognitive evaluation of speech, language, and communication in elderly
and high-risk individuals for dementia; (ii) facilitates the diagnosis,
prognosis, and therapy efficacy in at-risk and language-impaired populations;
and (iii) allows easier extensibility to assess patients from a wide range of
languages. By employing AI models, CLA may inform neurocognitive theory on the
relationship between language symptoms and their neural bases. Finally, it
signals a paradigm shift by significantly advancing our ability to optimize the
prevention and treatment of elderly individuals with communication disorders,
allowing them to age gracefully with social engagement.
Related papers
- Explainable cognitive decline detection in free dialogues with a Machine Learning approach based on pre-trained Large Language Models [6.817247544942709]
We propose using Large Language Models to extract features from free dialogues to detect cognitive decline.
Our solution comprises (i) preprocessing, (ii) feature engineering via Natural Language Processing techniques and prompt engineering, (iii) feature analysis and selection to optimize performance, and (iv) classification, supported by automatic explainability.
arXiv Detail & Related papers (2024-11-04T12:38:08Z) - Leveraging Large Language Models through Natural Language Processing to provide interpretable Machine Learning predictions of mental deterioration in real time [5.635300481123079]
Based on official estimates, 50 million people worldwide are affected by dementia, and this number increases by 10 million new patients every year.
To this end, Artificial Intelligence and computational linguistics can be exploited for natural language analysis, personalized assessment, monitoring, and treatment.
We contribute with an affordable, flexible, non-invasive, personalized diagnostic system to this work.
arXiv Detail & Related papers (2024-09-05T09:27:05Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - Language Generation from Brain Recordings [68.97414452707103]
We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
arXiv Detail & Related papers (2023-11-16T13:37:21Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - Reformulating NLP tasks to Capture Longitudinal Manifestation of
Language Disorders in People with Dementia [18.964022118823532]
We learn linguistic disorder patterns by making use of a moderately-sized pre-trained language model.
We then use the probability estimates from the best model to construct digital linguistic markers.
Our proposed linguistic disorder markers provide useful insights into gradual language impairment associated with disease progression.
arXiv Detail & Related papers (2023-10-15T17:58:47Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
We propose a CogAlign approach to integrate cognitive language processing signals into natural language processing models.
We show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets.
arXiv Detail & Related papers (2021-06-10T07:10:25Z) - Predicting Early Indicators of Cognitive Decline from Verbal Utterances [2.387625146176821]
Dementia is a group of irreversible, chronic, and progressive neurodegenerative disorders resulting in impaired memory, communication, and thought processes.
We measure the feasibility of using the linguistic characteristics of verbal utterances elicited during neuropsychological exams to distinguish between elderly control groups, people with MCI, people diagnosed with possible Alzheimer's disease (AD), and probable AD.
Our experiments show that a combination of contextual and psycholinguistic features extracted by a Support Vector Machine improved distinguishing the verbal utterances of elderly controls, people with MCI, possible AD, and probable AD.
arXiv Detail & Related papers (2020-11-19T02:24:11Z) - A Multi-modal Machine Learning Approach and Toolkit to Automate
Recognition of Early Stages of Dementia among British Sign Language Users [5.8720142291102135]
A timely diagnosis helps in obtaining necessary support and appropriate medication.
Deep learning based approaches for image and video analysis and understanding are promising.
We show that our approach is not over-fitted and has the potential to scale up.
arXiv Detail & Related papers (2020-10-01T16:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.