論文の概要: Traffic Surveillance using Vehicle License Plate Detection and
Recognition in Bangladesh
- arxiv url: http://arxiv.org/abs/2012.02218v1
- Date: Thu, 3 Dec 2020 19:16:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-23 17:28:36.785436
- Title: Traffic Surveillance using Vehicle License Plate Detection and
Recognition in Bangladesh
- Title(参考訳): バングラデシュにおける車両ナンバープレート検出と認識による交通監視
- Authors: Md. Saif Hassan Onim, Muhaiminul Islam Akash, Mahmudul Haque, Raiyan
Ibne Hafiz
- Abstract要約: 本稿では,バングラデシュの車両のナンバープレートを検出するために,畳み込みニューラルネットワーク(CNN)を訓練し,調整したYOLOv4オブジェクト検出モデルを提案する。
ここでは、ピソンパッケージであるTkinterをベースとしたグラフィカルユーザインタフェース(GUI)についても紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision coupled with Deep Learning (DL) techniques bring out a
substantial prospect in the field of traffic control, monitoring and law
enforcing activities. This paper presents a YOLOv4 object detection model in
which the Convolutional Neural Network (CNN) is trained and tuned for detecting
the license plate of the vehicles of Bangladesh and recognizing characters
using tesseract from the detected license plates. Here we also present a
Graphical User Interface (GUI) based on Tkinter, a python package. The license
plate detection model is trained with mean average precision (mAP) of 90.50%
and performed in a single TESLA T4 GPU with an average of 14 frames per second
(fps) on real time video footage.
- Abstract(参考訳): 深層学習(DL)技術と組み合わせたコンピュータビジョンは、交通制御、監視、法執行活動の分野で大きな可能性をもたらす。
本稿では,バングラデシュの車両のライセンスプレートを検出し,検出されたライセンスプレートからtesseractを用いて文字を認識するために,畳み込みニューラルネットワーク(cnn)を訓練し,チューニングしたyolov4オブジェクト検出モデルを提案する。
ここでは、ピソンパッケージであるTkinterをベースにしたグラフィカルユーザインタフェース(GUI)を紹介する。
ライセンスプレート検出モデルは平均平均精度(mAP)90.50%でトレーニングされ、リアルタイムビデオ映像で平均14フレーム/秒(fps)の単一のTESLA T4 GPUで実行される。
関連論文リスト
- A Dataset and Model for Realistic License Plate Deblurring [17.52035404373648]
ライセンスプレートブラ(LPBlur)と呼ばれる,最初の大規模ナンバープレートデブロアリングデータセットについて紹介する。
そこで我々は,ライセンスプレート・デブロアリングに対処するために,LPDGAN (L License Plate Deblurring Generative Adversarial Network) を提案する。
提案手法は,現実的なナンバープレートのデブロアリングシナリオにおいて,他の最先端の動作デブロアリング手法よりも優れる。
論文 参考訳(メタデータ) (2024-04-21T14:36:57Z) - PlateSegFL: A Privacy-Preserving License Plate Detection Using Federated Segmentation Learning [0.0]
PlateSegFLがFederated Learning (FL)と共にU-Netベースのセグメンテーションを実装した
携帯電話のような様々なコンピューティングプラットフォームは、標準的な予測モデルの開発に協力することができる。
論文 参考訳(メタデータ) (2024-04-07T19:10:02Z) - Traffic Scene Parsing through the TSP6K Dataset [109.69836680564616]
高品質なピクセルレベルのアノテーションとインスタンスレベルのアノテーションを備えた,TSP6Kと呼ばれる特殊なトラフィック監視データセットを導入する。
データセットは、既存の運転シーンの何倍ものトラフィック参加者を持つ、より混雑した交通シーンをキャプチャする。
交通シーンの異なるセマンティック領域の詳細を復元するシーン解析のためのディテールリフィニングデコーダを提案する。
論文 参考訳(メタデータ) (2023-03-06T02:05:14Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - BLPnet: A new DNN model and Bengali OCR engine for Automatic License
Plate Recognition [1.924182131418037]
本稿では,ベンガル文字の自動ライセンスプレート認識(ALPR)システムについて報告する。
計算ニューラルネットワーク(CNN)ベースの新しいベンガルOCRエンジンにより、モデルは文字回転不変である。
リアルタイムビデオ映像に毎秒17フレーム(fps)を投入するモデルは、平均正方形誤差(MSE)0.0152の車両を検知でき、平均ナンバープレート文字認識精度は95%である。
論文 参考訳(メタデータ) (2022-02-18T22:58:53Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - An Automated Approach for the Recognition of Bengali License Plates [0.0]
本研究では,ライセンスプレートを文字で検出するハイブリッド手法を提案する。
撮影画像はバングラデシュの車両の認識手順に利用した。
論文 参考訳(メタデータ) (2021-09-01T17:31:33Z) - End-to-End License Plate Recognition Pipeline for Real-time Low Resource
Video Based Applications [0.43012765978447565]
リアルタイムの推論速度を実現するために、Vision APIと組み合わせた新しい2段階検出パイプラインを提案する。
私たちは、画像データセットと、野生のライセンスプレートを含むビデオデータセットに基づいて、モデルをトレーニングしました。
実時間処理速度(毎秒27.2フレーム)で妥当な検出・認識性能を観測した。
論文 参考訳(メタデータ) (2021-08-18T18:31:01Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
単一画像から完全テクスチャ化された車両の3次元モデルを検出し,セグメント化し,再構成する新しい手法を提案する。
私たちのアプローチは、ディープラーニングの強みと従来のテクニックの優雅さを組み合わせています。
我々はこれらのアルゴリズムを自律運転システムに統合した。
論文 参考訳(メタデータ) (2020-07-16T05:02:45Z) - A Robust Attentional Framework for License Plate Recognition in the Wild [95.7296788722492]
本稿では,ライセンスプレート認識のための堅牢なフレームワークを提案する。
ナンバープレート画像生成のためのCycleGANモデルと、プレート認識のための精巧な設計された画像系列ネットワークで構成されている。
われわれは、中国本土31州から1200枚の画像を含む新しいライセンスプレートデータセット「CLPD」をリリースした。
論文 参考訳(メタデータ) (2020-06-06T17:11:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。