Quantum Internet under random breakdowns and intentional attacks
- URL: http://arxiv.org/abs/2012.02241v3
- Date: Fri, 13 Aug 2021 18:28:48 GMT
- Title: Quantum Internet under random breakdowns and intentional attacks
- Authors: Bingzhi Zhang and Quntao Zhuang
- Abstract summary: It is important to understand the robustness of large-scale quantum networks, similar to what has been done for the classical counterpart---the Internet.
Our results apply to quantum internet based on fibers for all kinds of quantum communications.
- Score: 1.14219428942199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum networks will play a key role in distributed quantum information
processing. As the network size increases, network-level errors like random
breakdown and intentional attack are inevitable; therefore, it is important to
understand the robustness of large-scale quantum networks, similar to what has
been done for the classical counterpart---the Internet. For exponential
networks such as Waxman networks, errors simply re-parameterize the network and
lead to a linear decrease of the quantum capacity with the probability of
error. The same linear decay happens for scale-free quantum networks under
random breakdowns, despite the previously discovered robustness in terms of the
connectivity. In presence of attack, however, the capacity of scale-free
quantum networks shows a sharp exponential decay with the increasing attack
fraction. Our results apply to quantum internet based on fibers for all kinds
of quantum communications and provide implications for the future construction
of quantum networks with regard to its robustness.
Related papers
- Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Resource Placement for Rate and Fidelity Maximization in Quantum Networks [8.707824275470188]
Existing classical optical network infrastructure cannot be immediately used for quantum network applications due to photon loss.
We present a comprehensive framework for network planning, aiming to efficiently distributing quantum repeaters across existing infrastructure.
We explore the effect of quantum memory multiplexing within quantum repeaters, as well as the influence of memory coherence time on quantum network utility.
arXiv Detail & Related papers (2023-08-30T18:45:21Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Internet: The Future of Internetworking [16.313110394211154]
The purpose of a quantum Internet is to enable applications that are fundamentally out of reach for the classical Internet.
This chapter aims to present the main concepts, challenges, and opportunities for research in quantum information, quantum computing and quantum networking.
arXiv Detail & Related papers (2023-04-30T23:17:47Z) - Hybrid Error-Management Strategies in Quantum Repeater Networks [0.7036032466145112]
We address the performance of a quantum network capable of quantum error correction and entanglement purification.
Results show that one should distribute Bell pairs as fast as possible while balancing the deployment of fidelity enhancement.
arXiv Detail & Related papers (2023-03-18T00:26:01Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Robustness of Noisy Quantum Networks [0.0]
We show that quantum networks based on typical noisy quantum-repeater nodes are prone to discontinuous phase transitions.
Our results indicate that a scale-free topology is a crucial design principle to establish a robust large-scale quantum internet.
arXiv Detail & Related papers (2021-03-04T19:01:49Z) - Entanglement Accessibility Measures for the Quantum Internet [0.0]
We define metrics and measures to characterize the ratio of accessible quantum entanglement for complex network failures in the quantum Internet.
The proposed methods can be applied to an arbitrary topology quantum network to extract relevant statistics.
arXiv Detail & Related papers (2020-03-11T11:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.