論文の概要: Deep Learning for Medical Anomaly Detection -- A Survey
- arxiv url: http://arxiv.org/abs/2012.02364v2
- Date: Tue, 13 Apr 2021 04:43:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 20:53:51.991678
- Title: Deep Learning for Medical Anomaly Detection -- A Survey
- Title(参考訳): 医学的異常検出のための深層学習--サーベイ
- Authors: Tharindu Fernando, Harshala Gammulle, Simon Denman, Sridha Sridharan,
Clinton Fookes
- Abstract要約: 本調査は,医学的異常検出における一般的な深層学習手法の詳細な理論的解析である。
我々は、アーキテクチャの違いとトレーニングアルゴリズムを比較し、対比しながら、最先端技術の一貫性と体系的なレビューに貢献する。
さらに,既存の深部医学的異常検出技術の重要な限界について概説し,今後の研究の方向性について検討する。
- 参考スコア(独自算出の注目度): 38.32234937094937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning-based medical anomaly detection is an important problem that
has been extensively studied. Numerous approaches have been proposed across
various medical application domains and we observe several similarities across
these distinct applications. Despite this comparability, we observe a lack of
structured organisation of these diverse research applications such that their
advantages and limitations can be studied. The principal aim of this survey is
to provide a thorough theoretical analysis of popular deep learning techniques
in medical anomaly detection. In particular, we contribute a coherent and
systematic review of state-of-the-art techniques, comparing and contrasting
their architectural differences as well as training algorithms. Furthermore, we
provide a comprehensive overview of deep model interpretation strategies that
can be used to interpret model decisions. In addition, we outline the key
limitations of existing deep medical anomaly detection techniques and propose
key research directions for further investigation.
- Abstract(参考訳): 機械学習に基づく医療異常検出は、広く研究されている重要な問題である。
様々な医療応用領域において様々なアプローチが提案されており、これら異なる応用分野にまたがる類似点がいくつか見受けられる。
このような適合性にもかかわらず、これらの多様な研究アプリケーションの構造化された組織が欠如していることを観察し、その利点と限界を研究できる。
本調査の主な目的は,医学的異常検出における一般的な深層学習手法の詳細な理論的解析を提供することである。
特に,最先端技術に関するコヒーレントで体系的なレビューを行い,そのアーキテクチャ的差異とトレーニングアルゴリズムの比較・対比を行った。
さらに,モデル決定の解釈に使用できる深層モデル解釈戦略の包括的概要を提供する。
また,既存の深部医療異常検出技術の限界を概説し,今後の研究に向けた重要な研究指針を提案する。
関連論文リスト
- Out-of-distribution Detection in Medical Image Analysis: A survey [12.778646136644399]
コンピュータ支援診断は、ディープラーニングベースのコンピュータビジョン技術の発展の恩恵を受けている。
従来の教師付きディープラーニング手法は、テストサンプルがトレーニングデータと同じ分布から引き出されることを前提としている。
実際の臨床シナリオでは分布外のサンプルに遭遇し、深層学習に基づく医用画像解析タスクにおいてサイレント障害を引き起こす可能性がある。
論文 参考訳(メタデータ) (2024-04-28T18:51:32Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - A Comprehensive Review of Artificial Intelligence Applications in Major
Retinal Conditions [6.728206045751265]
本論文は視覚障害や視覚障害を引き起こす網膜疾患の系統的調査である。
網膜疾患を検出するための臨床と自動化の両方のアプローチをカバーしており、過去10年間の研究に焦点を当てている。
論文 参考訳(メタデータ) (2023-11-22T22:10:53Z) - Adversarial Attack and Defense for Medical Image Analysis: Methods and
Applications [57.206139366029646]
医用画像解析における対人攻撃と防御の進歩に関する総合的な調査を報告する。
医療画像解析のための異なる種類の敵攻撃のための統一的理論的枠組みと防衛方法を提供する。
公正な比較のために、逆向きに堅牢な診断モデルのための新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2023-03-24T16:38:58Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
論文 参考訳(メタデータ) (2022-11-09T22:40:22Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
我々は最近200以上の論文をレビュー・要約し、様々な医用画像解析タスクにおける深層学習手法の適用の概要を概観した。
特に,医用画像における最先端の非教師あり半教師あり深層学習の進歩と貢献を強調した。
論文 参考訳(メタデータ) (2021-05-27T18:05:12Z) - Deep Learning for Anomaly Detection: A Review [150.9270911031327]
本稿では,3つの高レベルカテゴリと11の細粒度カテゴリの進歩を網羅した包括的分類法による深部異常検出の研究について調査する。
我々は、それらの重要な直観、客観的機能、基礎となる仮定、利点とデメリットをレビューし、上記の課題にどのように対処するかについて議論する。
論文 参考訳(メタデータ) (2020-07-06T02:21:16Z) - Explainable deep learning models in medical image analysis [0.0]
様々な医学的診断に非常に効果的で、その一部で人間の専門家を圧倒している。
最近の説明可能性研究は、モデルの決定に最も影響を及ぼす特徴を示すことを目的としている。
ここでは、様々な医療画像タスクに対する説明可能な深層学習の現在の応用について概説する。
論文 参考訳(メタデータ) (2020-05-28T06:31:05Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
本調査は,ディープラーニングアプリケーションにおける異常検出の研究について,構造化された包括的概要を提供する。
既存の技術に対する分類法を,その基礎となる前提と採用アプローチに基づいて提案する。
本稿では,DLシステムに異常検出技術を適用しながら未解決の研究課題を取り上げ,今後の課題について述べる。
論文 参考訳(メタデータ) (2020-03-16T02:47:23Z) - Deep neural network models for computational histopathology: A survey [1.2891210250935146]
深層学習は がん組織像の分析と解釈において 主流の方法論選択となりました
本稿では,現在使われている最先端の深層学習手法について概説する。
私たちは、現在のディープラーニングアプローチにおける重要な課題と制限と、将来の研究への道のりを強調します。
論文 参考訳(メタデータ) (2019-12-28T01:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。