論文の概要: DDRel: A New Dataset for Interpersonal Relation Classification in Dyadic
Dialogues
- arxiv url: http://arxiv.org/abs/2012.02553v1
- Date: Fri, 4 Dec 2020 12:30:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 20:44:11.594561
- Title: DDRel: A New Dataset for Interpersonal Relation Classification in Dyadic
Dialogues
- Title(参考訳): ddrel: dyadic対話における対人関係分類のための新しいデータセット
- Authors: Qi Jia, Hongru Huang, Kenny Q. Zhu
- Abstract要約: 本稿では,対話に基づく対話者関係分類の課題を提案する。
我々はIMSDbから映画スクリプトをクロールし、13の事前定義された関係に従って各セッションの関連ラベルを注釈付けした。
注釈付きデータセットDDRelは、合計53,126発の694対の話者間の6300のダイアディック対話セッションで構成されている。
- 参考スコア(独自算出の注目度): 11.531187569461489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpersonal language style shifting in dialogues is an interesting and
almost instinctive ability of human. Understanding interpersonal relationship
from language content is also a crucial step toward further understanding
dialogues. Previous work mainly focuses on relation extraction between named
entities in texts. In this paper, we propose the task of relation
classification of interlocutors based on their dialogues. We crawled movie
scripts from IMSDb, and annotated the relation labels for each session
according to 13 pre-defined relationships. The annotated dataset DDRel consists
of 6300 dyadic dialogue sessions between 694 pair of speakers with 53,126
utterances in total. We also construct session-level and pair-level relation
classification tasks with widely-accepted baselines. The experimental results
show that this task is challenging for existing models and the dataset will be
useful for future research.
- Abstract(参考訳): 対話における対人的言語スタイルの変化は、人間の興味深く、ほとんど本能的な能力である。
言語コンテンツから対人関係を理解することは、対話をさらに理解するための重要なステップである。
先行研究は主にテキスト中の名前付きエンティティ間の関係抽出に焦点を当てている。
本稿では,対話に基づく対話者の関係分類の課題を提案する。
我々はIMSDbから映画スクリプトをクロールし、13の事前定義された関係に従って各セッションの関連ラベルを注釈付けした。
注釈付きデータセット ddrel は、合計53,126発話の694対の話者による6300のdyadic対話セッションで構成されている。
また,セッションレベルおよびペアレベルの関係分類タスクを,広く受け入れられるベースラインで構築する。
実験結果から,本課題は既存モデルでは困難な課題であり,将来の研究にはデータセットが有用であることが示唆された。
関連論文リスト
- Conversation Chronicles: Towards Diverse Temporal and Relational
Dynamics in Multi-Session Conversations [9.249662593315541]
我々は,長期会話設定を実装するために,新たに100万件の多セッション対話データセットであるConversation Chroniclesを導入する。
会話年代記の対話エピソードは、一貫性と一貫した相互作用を維持しながら、それらの特性を反映していることを示す。
また、時系列要約と対話生成モジュールで構成されるReBotと呼ばれる対話モデルを提案する。
論文 参考訳(メタデータ) (2023-10-20T11:06:21Z) - ChatGPT Evaluation on Sentence Level Relations: A Focus on Temporal,
Causal, and Discourse Relations [52.26802326949116]
対話型大規模言語モデルChatGPTの性能を,文間関係に基づいて定量的に評価する。
ChatGPTは因果関係の検出と推論において極めて優れた能力を示す。
既存の明示的な談話接続物との談話関係の大多数を特定できるが、暗黙的な談話関係は依然として恐ろしい課題である。
論文 参考訳(メタデータ) (2023-04-28T13:14:36Z) - Learning to Memorize Entailment and Discourse Relations for
Persona-Consistent Dialogues [8.652711997920463]
既存の作業は、高度ネットワーク構造を持つ対話者ペルソナを意図的に学習することで、対話システムの性能を改善した。
本研究は,ペルソナ一貫性のある対話課題における係り受け関係と談話関係を記憶する学習方法を提案する。
論文 参考訳(メタデータ) (2023-01-12T08:37:00Z) - Dial2vec: Self-Guided Contrastive Learning of Unsupervised Dialogue
Embeddings [41.79937481022846]
教師なし対話の埋め込みを学習するタスクについて紹介する。
事前学習された単語や文の埋め込みや、事前学習された言語モデルによるエンコーディングといったトライアル的なアプローチは、実現可能であることが示されている。
本稿では,Dial2vecという自己指導型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-10-27T11:14:06Z) - A Benchmark for Understanding and Generating Dialogue between Characters
in Stories [75.29466820496913]
本研究は,機械が物語の対話を理解・生成できるかどうかを探求する最初の研究である。
マスク付き対話生成と対話話者認識という2つの新しいタスクを提案する。
DialStoryの自動評価と手動評価で既存のモデルをテストすることで,提案課題の難しさを示す。
論文 参考訳(メタデータ) (2022-09-18T10:19:04Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
我々は、ウィキペディアのテキストとテーブルの両方を基盤とした、クラウドソーシングされた自然な会話からなる新しい対話データセットHybriDialogueを提示する。
これらの会話は、複雑なマルチホップ質問をシンプルで現実的なマルチターン対話に分解することで生成される。
論文 参考訳(メタデータ) (2022-04-28T00:52:16Z) - Who says like a style of Vitamin: Towards Syntax-Aware
DialogueSummarization using Multi-task Learning [2.251583286448503]
個々の話者からの発声と独特の統語構造との関係に焦点をあてる。
話者は、音声プリントのような言語情報を含むことができる独自のテキストスタイルを持つ。
構文認識情報と対話要約の両方をマルチタスクで学習する。
論文 参考訳(メタデータ) (2021-09-29T05:30:39Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Is this Dialogue Coherent? Learning from Dialogue Acts and Entities [82.44143808977209]
スイッチボード・コヒーレンス・コーパス(SWBD-Coh)コーパス(Switchboard Coherence corpus,SWBD-Coh)を作成する。
コーパスの統計的分析は、ターンコヒーレンス知覚がエンティティの分布パターンによってどのように影響を受けるかを示している。
DA情報とエンティティ情報を組み合わせたモデルでは,応答選択とターンコヒーレンス評価の両面で最高の性能が得られることがわかった。
論文 参考訳(メタデータ) (2020-06-17T21:02:40Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。