論文の概要: Review: Deep Learning Methods for Cybersecurity and Intrusion Detection
Systems
- arxiv url: http://arxiv.org/abs/2012.02891v1
- Date: Fri, 4 Dec 2020 23:09:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 22:22:06.135804
- Title: Review: Deep Learning Methods for Cybersecurity and Intrusion Detection
Systems
- Title(参考訳): サイバーセキュリティと侵入検知システムのための深層学習法
- Authors: Mayra Macas, Chunming Wu
- Abstract要約: 人工知能(AI)と機械学習(ML)はサイバー防衛の鍵となる技術として活用することができる。
本稿では,ネットワーク侵入検出に使用される様々な深層学習手法について検討する。
- 参考スコア(独自算出の注目度): 6.459380657702644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the number of cyber-attacks is increasing, cybersecurity is evolving to a
key concern for any business. Artificial Intelligence (AI) and Machine Learning
(ML) (in particular Deep Learning - DL) can be leveraged as key enabling
technologies for cyber-defense, since they can contribute in threat detection
and can even provide recommended actions to cyber analysts. A partnership of
industry, academia, and government on a global scale is necessary in order to
advance the adoption of AI/ML to cybersecurity and create efficient cyber
defense systems. In this paper, we are concerned with the investigation of the
various deep learning techniques employed for network intrusion detection and
we introduce a DL framework for cybersecurity applications.
- Abstract(参考訳): サイバー攻撃の数が増えるにつれて、サイバーセキュリティはあらゆるビジネスにとって重要な懸念に発展しつつある。
人工知能(AI)と機械学習(ML)(特にディープラーニング - DL)は、脅威検出に寄与し、サイバーアナリストに推奨アクションを提供することができるため、サイバー防衛の重要な技術として活用することができる。
サイバーセキュリティへのAI/MLの採用を推進し、効率的なサイバー防衛システムを構築するためには、産業、学術、政府とのグローバルなパートナーシップが必要である。
本稿では,ネットワーク侵入検出に使用される各種深層学習手法について検討し,サイバーセキュリティアプリケーションのためのdlフレームワークを提案する。
関連論文リスト
- Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
マルチエージェントディープ強化学習(MADRL)は、自律型サイバーオペレーションの有効性とレジリエンスを高めるための有望なアプローチである。
シミュレーションサイバー攻撃シナリオにおいて,各エージェントが迅速に学習し,MADRLを用いて自律的に脅威に対処できることを実証する。
論文 参考訳(メタデータ) (2024-10-11T15:15:09Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - A Survey on Explainable Artificial Intelligence for Cybersecurity [14.648580959079787]
説明可能な人工知能(XAI)は、決定と行動に対して明確かつ解釈可能な説明を提供する機械学習モデルを作成することを目的としている。
ネットワークサイバーセキュリティの分野では、XAIは、サイバー脅威の振る舞いをよりよく理解することで、ネットワークセキュリティへのアプローチ方法に革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-03-07T22:54:18Z) - Defending against cybersecurity threats to the payments and banking
system [0.0]
サイバー犯罪の拡散は、銀行セクターの様々な利害関係者にとって大きな懸念である。
ソフトウェアシステムに対するサイバー攻撃のリスクを防止するには、サイバースペース内で動作しているエンティティを特定する必要がある。
本稿では,サイバー空間の資産を識別し,サイバー脅威を分類し,セキュリティ対策を提供し,タイプや機能を管理するためのセキュリティ対策をマップ化する,様々なアプローチについて検討する。
論文 参考訳(メタデータ) (2022-12-15T11:55:11Z) - Deep Reinforcement Learning for Cybersecurity Threat Detection and
Protection: A Review [1.933681537640272]
ディープラーニングと機械学習ベースのソリューションは、脅威の検出と保護に使用されている。
深層強化学習(Deep Reinforcement Learning)は、これまで高度な人間の認識を必要としていた分野のためのAIベースのソリューションを開発する上で、非常に有望であることを示している。
教師付き機械やディープラーニングとは異なり、深層強化学習はより多様な方法で使われ、脅威防衛の分野で多くの革新的な応用に力を与えている。
論文 参考訳(メタデータ) (2022-06-06T16:42:00Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - A Framework for Evaluating the Cybersecurity Risk of Real World, Machine
Learning Production Systems [41.470634460215564]
我々はML生産システムにサイバー攻撃を組み込むMulVAL攻撃グラフ生成および分析フレームワークの拡張を開発する。
提案された拡張を使用することで、セキュリティ実践者はMLコンポーネントを含む環境にアタックグラフ分析手法を適用することができる。
論文 参考訳(メタデータ) (2021-07-05T05:58:11Z) - Artificial Neural Network for Cybersecurity: A Comprehensive Review [0.0]
本稿では,Deep Learning(DL)アプローチのサイバーセキュリティへの適用について,体系的なレビューを行う。
現在普及しているIoTおよび他のネットワークにおけるサイバー攻撃について、そしてこれらの攻撃を管理するためのDLメソッドの有効性について議論する。
最後に、信頼性と実践可能なIoT駆動型医療システムにおけるサイバーセキュリティの重要性について論じる。
論文 参考訳(メタデータ) (2021-06-20T09:32:48Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。