Crystal Structure Search with Random Relaxations Using Graph Networks
- URL: http://arxiv.org/abs/2012.02920v2
- Date: Tue, 8 Dec 2020 02:01:39 GMT
- Title: Crystal Structure Search with Random Relaxations Using Graph Networks
- Authors: Gowoon Cheon, Lusann Yang, Kevin McCloskey, Evan J. Reed and Ekin D.
Cubuk
- Abstract summary: prediction of the atomic crystal structure for a material's chemical formula is a long-standing grand challenge.
We build a novel dataset of random structure relaxations of Li-Si battery anode materials.
We train graph neural networks to simulate relaxations of random structures.
- Score: 6.918493795610175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Materials design enables technologies critical to humanity, including
combating climate change with solar cells and batteries. Many properties of a
material are determined by its atomic crystal structure. However, prediction of
the atomic crystal structure for a given material's chemical formula is a
long-standing grand challenge that remains a barrier in materials design. We
investigate a data-driven approach to accelerating ab initio random structure
search (AIRSS), a state-of-the-art method for crystal structure search. We
build a novel dataset of random structure relaxations of Li-Si battery anode
materials using high-throughput density functional theory calculations. We
train graph neural networks to simulate relaxations of random structures. Our
model is able to find an experimentally verified structure of Li15Si4 it was
not trained on, and has potential for orders of magnitude speedup over AIRSS
when searching large unit cells and searching over multiple chemical
stoichiometries. Surprisingly, we find that data augmentation of adding
Gaussian noise improves both the accuracy and out of domain generalization of
our models.
Related papers
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Unleashing the power of novel conditional generative approaches for new materials discovery [3.972733741872872]
We propose two generative approaches to the problem of crystal structure design.
One is conditional structure modification, using the energy difference between the most energetically favorable structure and all its less stable polymorphs.
The other is conditional structure generation, using the energy difference between the most energetically favorable structure and all its less stable polymorphs.
arXiv Detail & Related papers (2024-11-05T14:58:31Z) - Generative Hierarchical Materials Search [91.93125016916463]
We propose Generative Hierarchical Materials Search (GenMS) for controllable generation of crystal structures.
GenMS consists of (1) a language model that takes high-level natural language as input and generates intermediate textual information about a crystal.
GenMS additionally uses a graph neural network to predict properties (e.g., formation energy) from the generated crystal structures.
arXiv Detail & Related papers (2024-09-10T17:51:28Z) - Ab Initio Structure Solutions from Nanocrystalline Powder Diffraction Data [4.463003012243322]
A major challenge in materials science is the determination of the structure of nanometer sized objects.
We present a novel approach that uses a generative machine learning model based on diffusion processes that is trained on 45,229 known structures.
We find that our model, PXRDnet, can successfully solve simulated nanocrystals as small as 10 angstroms across 200 materials of varying symmetry and complexity.
arXiv Detail & Related papers (2024-06-16T03:45:03Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
Predicting physical properties of materials from their crystal structures is a fundamental problem in materials science.
We show that crystal structures are infinitely repeating, periodic arrangements of atoms, whose fully connected attention results in infinitely connected attention.
We propose a simple yet effective Transformer-based encoder architecture for crystal structures called Crystalformer.
arXiv Detail & Related papers (2024-03-18T11:37:42Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
We introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials.
In this paper, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench.
The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
arXiv Detail & Related papers (2023-10-07T21:36:55Z) - Disentangling multiple scattering with deep learning: application to
strain mapping from electron diffraction patterns [48.53244254413104]
We implement a deep neural network called FCU-Net to invert highly nonlinear electron diffraction patterns into quantitative structure factor images.
We trained the FCU-Net using over 200,000 unique dynamical diffraction patterns which include many different combinations of crystal structures.
Our simulated diffraction pattern library, implementation of FCU-Net, and trained model weights are freely available in open source repositories.
arXiv Detail & Related papers (2022-02-01T03:53:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.