論文の概要: Cross-Domain Sentiment Classification with In-Domain Contrastive
Learning
- arxiv url: http://arxiv.org/abs/2012.02943v1
- Date: Sat, 5 Dec 2020 03:48:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 12:14:03.713660
- Title: Cross-Domain Sentiment Classification with In-Domain Contrastive
Learning
- Title(参考訳): ドメイン内コントラスト学習によるクロスドメイン感情分類
- Authors: Tian Li and Xiang Chen and Shanghang Zhang and Zhen Dong and Kurt
Keutzer
- Abstract要約: クロスドメイン感情分類のためのコントラスト学習フレームワークを提案する。
ドメイン内コントラスト学習とエントロピー最小化を導入する。
我々のモデルは標準ベンチマークで達成される。
- 参考スコア(独自算出の注目度): 38.08616968654886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning (CL) has been successful as a powerful representation
learning method. In this paper, we propose a contrastive learning framework for
cross-domain sentiment classification. We aim to induce domain invariant
optimal classifiers rather than distribution matching. To this end, we
introduce in-domain contrastive learning and entropy minimization. Also, we
find through ablation studies that these two techniques behaviour differently
in case of large label distribution shift and conclude that the best practice
is to choose one of them adaptively according to label distribution shift. The
new state-of-the-art results our model achieves on standard benchmarks show the
efficacy of the proposed method.
- Abstract(参考訳): コントラスト学習(CL)は強力な表現学習手法として成功している。
本稿では,クロスドメイン感情分類のためのコントラスト学習フレームワークを提案する。
分布マッチングよりもドメイン不変な最適分類器を誘導することを目指している。
この目的のために,ドメイン内コントラスト学習とエントロピー最小化を導入する。
また,ラベル分布シフトが大きい場合,これら2つの手法は異なる挙動を示すこと,ラベル分布シフトに応じて1つを適応的に選択することがベストプラクティスであると結論付けた。
本モデルが標準ベンチマークで達成した最新の成果は,提案手法の有効性を示すものである。
関連論文リスト
- Conditional Support Alignment for Domain Adaptation with Label Shift [8.819673391477034]
アンラベルド・ドメイン適応(アンラベルド・ドメイン・アダプティブ、Unlabelled Domain adapt、UDA)とは、学習モデルを、ソース・ドメインのラベル付きサンプルと対象ドメインの教師なしサンプルに基づいて訓練するドメイン適応フレームワークである。
本稿では,対象領域の特徴表現分布に対する条件対称的サポートのばらつきを最小限に抑えることを目的とした,新しい条件逆サポートアライメント(CASA)を提案する。
論文 参考訳(メタデータ) (2023-05-29T05:20:18Z) - Unsupervised Contrastive Domain Adaptation for Semantic Segmentation [75.37470873764855]
クロスドメイン適応における特徴アライメントのためのコントラスト学習を導入する。
提案手法は、ドメイン適応のための最先端手法を一貫して上回る。
Cityscapesデータセットで60.2% mIoUを達成した。
論文 参考訳(メタデータ) (2022-04-18T16:50:46Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
クロスモーダル医療画像セグメンテーションのための自己ペースコントラスト学習モデルを保存する新しいマージンを提案する。
プログレッシブに洗練されたセマンティックプロトタイプの指導により、埋め込み表現空間の識別性を高めるために、コントラスト損失を減少させる新しいマージンが提案される。
クロスモーダル心セグメンテーションタスクの実験は、MPSCLが意味セグメンテーション性能を大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-03-15T15:23:10Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Implicit Class-Conditioned Domain Alignment for Unsupervised Domain
Adaptation [18.90240379173491]
クラス条件付きドメインアライメントの現在の方法は、対象ドメインの擬ラベル推定に基づいて損失関数を明示的に最小化することを目的としている。
擬似ラベルから直接モデルパラメータの明示的な最適化の必要性を除去する手法を提案する。
サンプル選択手順を擬似ラベルで暗黙的にガイドするサンプリングベース暗黙アライメント手法を提案する。
論文 参考訳(メタデータ) (2020-06-09T00:20:21Z) - Class Distribution Alignment for Adversarial Domain Adaptation [32.95056492475652]
両領域間のサンプルのクラス分布を明示的に整合させるために, CADIT (Conditional ADversarial Image Translation) を提案する。
識別構造保存損失と連立対向生成損失を統合している。
提案手法は,最先端手法と比較して,対象領域の優れた分類を実現する。
論文 参考訳(メタデータ) (2020-04-20T15:58:11Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z) - A Sample Selection Approach for Universal Domain Adaptation [94.80212602202518]
普遍シナリオにおける教師なし領域適応の問題について検討する。
ソースドメインとターゲットドメインの間で共有されるクラスは、一部のみである。
共有クラスのサンプルの同定に有効なスコアリング方式を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。